Buch, Englisch, Band 68, 650 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1168 g
Buch, Englisch, Band 68, 650 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1168 g
Reihe: Applied Mathematical Sciences
ISBN: 978-0-387-94866-9
Verlag: Springer
In this book the author presents the dynamical systems in infinite dimension, especially those generated by dissipative partial differential equations. This book attempts a systematic study of infinite dimensional dynamical systems generated by dissipative evolution partial differential equations arising in mechanics and physics and in other areas of sciences and technology. This second edition has been updated and extended.
Zielgruppe
Graduate
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Physik Mechanik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Computeranwendungen in der Mathematik
- Mathematik | Informatik Mathematik Algebra Algebraische Strukturen, Gruppentheorie
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Maschinenbau
- Mathematik | Informatik Mathematik Mathematische Analysis Elementare Analysis und Allgemeine Begriffe
- Mathematik | Informatik Mathematik Algebra Lineare und multilineare Algebra, Matrizentheorie
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Naturwissenschaften Physik Angewandte Physik Statistische Physik, Dynamische Systeme
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
Weitere Infos & Material
Contents: General results and concepts on invariant sets and attractors.- Elements of functional analysis.- Attractors of the dissipative evolution equation of the first order in time: reaction-diffusion equations.- Fluid mechanics and pattern formation equations.- Attractors of dissipative wave equations.- Lyapunov exponents and dimensions of attractors.- Explicit bounds on the number of degrees of freedom and the dimension of attractors of some physical systems.- Non-well-posed problems, unstable manifolds. lyapunov functions, and lower bounds on dimensions.- The cone and squeezing properties.- Inertial manifolds.- New chapters: Inertial manifolds and slow manifolds the nonselfadjoint case.