E-Book, Englisch, Band Volume 76, 674 Seiten
Reihe: International Geophysics
Teisseyre / Majewski / Dmowska Earthquake Thermodynamics and Phase Transformation in the Earth's Interior
1. Auflage 2000
ISBN: 978-0-08-053065-9
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
E-Book, Englisch, Band Volume 76, 674 Seiten
Reihe: International Geophysics
ISBN: 978-0-08-053065-9
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
A group of distinguished scientists contributes to the foundations of a new discipline in Earth sciences: earthquake thermodynamics and thermodynamics of formation of the Earth's interior structures. The predictive powers of thermodynamics are so great that those aspiring to model earthquake and the Earth's interior will certainly wish to be able to use the theory. Thermodynamics is our only method of understanding and predicting the behavior of many environmental, atmospheric, and geological processes. The need for Earth scientists to develop a functional knowledge of thermodynamic concepts and methodology is therefore urgent. Sources of an entropy increase the dissipative and self-organizing systems driving the evolution and dynamics of the Universe and Earth through irreversible processes. The non-linear interactions lead to the formation of fractal structures. From the structural phase transformations the important interior boundaries emerge.Non-linear interactions between the defects in solids lead the authors to develop the physics of continua with a dense distribution of defects. Disclinations and dislocations interact during a slow evolution as well as during rapid dynamic events, like earthquakes. Splitting the dynamic processes into the 2D fault done and 3D surrounding space brings a new tool for describing the slip nucleation and propagation along the earthquake faults. Seismic efficiency, rupture velocity, and complexity of seismic source zone are considered from different points of view, fracture band earthquake model is developed on the basis of thermodynamics of line defects, like dislocations. Earthquake thermodynamics offers us a microscopic model of earthquake sources.Physics of defects helps the authors decscribe and explain a number of precursory phenomena caused by the buildup of stresses. Anomalies in electric polarization and electromagnetic radiation prior to earthquakes are considered from this point of view. Through the thermodynamic approach, the authors arrive at the fascinating question of posssibility of earthquake prediction. In general, the Earth is considered here as a multicomponent system. Transport phenomena as well as wave propagation and shock waves are considered in this system subjected also to chemical and phase transformations.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover ;1
2;Earthquake Thermodynamics and Phase Transformations in the Earth's Interior;4
3;Copyright Page ;5
4;Contents ;6
5;Contributors;16
6;Preface;18
7;Introduction;20
8;PART I: THERMODYNAMICS AND PHASE TRANSFORMATIONS IN THE EARTH'S INTERIOR;24
8.1;Chapter 1. The Composition of the Earth;26
8.1.1;1.1 Structure of the Earth;28
8.1.2;1.2 Chemical Constraints;30
8.1.3;1.3 Early Evolution of the Earth;43
8.1.4;References;44
8.2;Chapter 2. Thermodynamics of Chaos and Fractals Applied: Evolution of the Earth and Phase Transformations;48
8.2.1;2.1 Evolution of the Universe;48
8.2.2;2.2 Evolution of the Earth;51
8.2.3;2.3 Evolution Equations and Nonlinear Mappings;53
8.2.4;2.4 Strange Attractors;54
8.2.5;2.5 Examples of Maps;55
8.2.6;2.6 Concept of Temperature in Chaos Theory;56
8.2.7;2.7 Static and Dynamic States;56
8.2.8;2.8 Measures of Entropy and Information;58
8.2.9;2.9 The Lyapounov Exponents;62
8.2.10;2.10 Entropy Production;63
8.2.11;2.11 Entropy Budget of the Earth;66
8.2.12;2.12 The Evolution Criterion;71
8.2.13;2.13 The Driving Force of Evolution;72
8.2.14;2.14 Self-Organization Processes in Galaxies;73
8.2.15;2.15 Fractals;74
8.2.16;2.16 Thermodynamics of Multifractals;78
8.2.17;2.17 The Fractal Properties of Elastic Waves;81
8.2.18;2.18 Random Walk of Dislocations;84
8.2.19;2.19 Chaos in Phase Transformations;88
8.2.20;2.20 Conclusions;100
8.2.21;References;100
8.3;Chapter 3. Nonequilibrium Thermodynamics of Nonhydrostatically Stressed Solids;104
8.3.1;3.1 Introduction;104
8.3.2;3.2 Review of Hydrostatic Thermodynamics;105
8.3.3;3.3 Conservation Equations;107
8.3.4;3.4 Constitutive Assumptions;109
8.3.5;3.5 Chemical Potential in Stress Fields;111
8.3.6;3.6 Driving Force of Diffusion and Phase Transition;115
8.3.7;3.7 Phase Equilibria under Stress;118
8.3.8;3.8 Flow Laws of Diffusional Creeps;122
8.3.9;3.9 Summary;123
8.3.10;References;124
8.4;Chapter 4. Experiments on Soret Diffusion Applied to Core Dynamics;126
8.4.1;4.1 Review of Experiments Simulating the Core–Mantle Interactions;126
8.4.2;4.2 Experiments on Soret Diffusion;137
8.4.3;4.3 Thermodynamic Modeling of the Core–Mantle Interactions;142
8.4.4;4.4 Concluding Discussion;159
8.4.5;References;160
9;PART II: STRESS EVOLUTION AND THEORY OF CONTINUOUS DISTRIBUTION OF SELF-DEFORMATION NUCLEI;164
9.1;Chapter 5. Deformation Dynamics: Continuum with Self-Deformation Nuclei;166
9.1.1;5.1 Self-Strain Nuclei and Compatibility Conditions;166
9.1.2;5.2 Deformation Measures;167
9.1.3;5.3 Thermal Nuclei;170
9.1.4;5.4 Thermal Nuclei and Dislocations in 2D;172
9.1.5;5.5 Defect Densities and Sources of Incompatibility;174
9.1.6;5.6 Geometrical Objects;176
9.1.7;5.7 Constitutive Relations;179
9.1.8;5.8 Constitutive Laws for Bodies with the Electric-Stress Nuclei;184
9.1.9;References;187
9.2;Chapter 6. Evolution, Propagation, and Diffusion of Dislocation Fields;190
9.2.1;6.1 Dislocation Density Flow;190
9.2.2;6.2 Dislocation-Stress Relations;194
9.2.3;6.3 Propagation and Flow Equations for the Dislocation-Related Stress Field;198
9.2.4;6.4 Splitting the Stress Motion Equation into Seismic Wave and Fault-Related Fields;212
9.2.5;6.5 Evolution of Dislocation Fields: Problem of Earthquake Prediction;217
9.2.6;References;219
9.3;Chapter 7. Statistical Theory of Dislocations;222
9.3.1;7.1 Introduction;222
9.3.2;7.2 Dynamics and Statistics of Discrete Defects;224
9.3.3;7.3 The Field Equations;226
9.3.4;7.4 Field Equations of Interacting Continua;237
9.3.5;7.5 Approximate Solutions (Multiscale Method) in the One-Dimensional Case;241
9.3.6;7.6 Continuous Distributions of Vacancies;247
9.3.7;References;249
10;PART III: EARTHQUAKE THERMODYNAMICS AND FRACTURE PROCESSES;252
10.1;Chapter 8. Thermodynamics of Point Defects;254
10.1.1;8.1 Formation of Vacancies;254
10.1.2;8.2 Formation of Other Point Defects;264
10.1.3;8.3 Thermodynamics of the Specific Heat;267
10.1.4;8.4 Self-Diffusion;270
10.1.5;8.5 Relation of the Defect Parameters with Bulk Properties;275
10.1.6;References;282
10.2;Chapter 9. Thermodynamics of Line Defects and Earthquake Thermodynamics;284
10.2.1;9.1 Introduction;284
10.2.2;9.2 Dislocation Superlattice;286
10.2.3;9.3 Equilibrium Distribution of Vacant Dislocations;288
10.2.4;9.4 Thermodynamic Functions Related to Superlattice;289
10.2.5;9.5 Gibbs Free Energy;291
10.2.6;9.6 The Cµ..2 Model;293
10.2.7;9.7 Earthquake Thermodynamics;294
10.2.8;9.8 Premonitory and Earthquake Fracture Theory;297
10.2.9;9.9 Discussion;299
10.2.10;References;300
10.3;Chapter 10. Shear Band Thermodynamic Model of Fracturing;302
10.3.1;10.1 Introduction;302
10.3.2;10.2 Jogs and Kinks;304
10.3.3;10.3 Shear Band Model;305
10.3.4;10.4 Energy Release and Stresses;306
10.3.5;10.5 Source Thickness and Seismic Efficiency;310
10.3.6;10.6 Shear and Tensile Band Model: Mining Shocks and Icequakes;311
10.3.7;10.7 Results for Earthquakes, Mine Shocks, and Icequakes;314
10.3.8;10.8 Discussion;314
10.3.9;References;315
10.4;Chapter 11. Energy Budget of Earthquakes and Seismic Efficiency;316
10.4.1;11.1 Introduction;316
10.4.2;11.2 Energy Budget of Earthquakes;316
10.4.3;11.3 Stress on a Fault Plane;317
10.4.4;11.4 Seismic Moment and Radiated Energy;318
10.4.5;11.5 Seismic Efficiency and Radiation Efficiency;319
10.4.6;11.6 Relation between Efficiency and Rupture Speed;320
10.4.7;11.7 Efficiency of Shallow Earthquakes;322
10.4.8;11.8 Deep-Focus Earthquakes;326
10.4.9;References;327
10.5;Chapter 12. Coarse-Grained Models and Simulations for Nucleation, Growth, and Arrest of Earthquakes;330
10.5.1;12.1 Introduction;330
10.5.2;12.2 Physical Picture;332
10.5.3;12.3 Two Models for Mainshocks;333
10.5.4;12.4 Consequences, Predictions, and Observational Tests;340
10.5.5;12.5 Final Remarks;342
10.5.6;References;343
10.6;Chapter 13. Thermodynamics of Fault Slip;346
10.6.1;13.1 Introduction;346
10.6.2;13.2 Fault Entropy;347
10.6.3;13.3 Physical Interpretation;349
10.6.4;13.4 Conclusions;350
10.6.5;References;350
10.7;Chapter 14. Mechanochemistry: A Hypothesis for Shallow Earthquakes;352
10.7.1;14.1 Introduction;352
10.7.2;14.2 Strain, Stress, and Heat Flow Paradoxes;352
10.7.3;14.3 Chemistry: Mineral Alteration and Chemical Transformation;356
10.7.4;14.4 Dynamics: Explosive Release of Chemical Energy;359
10.7.5;14.5 Dynamics: The Genuine Rupture;366
10.7.6;14.6 Consequences and Predictions;368
10.7.7;Appendix 1: Explosive Shock Neglecting Electric Effects;371
10.7.8;Appendix 2: Elastic–Electric Coupled Wave;377
10.7.9;Appendix 3: Structural Shock Including Electric Effects;380
10.7.10;References;383
10.8;Chapter 15. The Anticrack Mechanism of High-Pressure Faulting: Summary of Experimental Observations and Geophysical Implications;390
10.8.1;15.1 Introduction;390
10.8.2;15.2 New Results;391
10.8.3;15.3 Discussion;394
10.8.4;References;399
10.9;Chapter 16. Anticrack-Associated Faulting and Superplastic Flow in Deep Subduction Zones;402
10.9.1;16.1 Introduction;402
10.9.2;16.2 Antidislocations;405
10.9.3;16.3 Anticrack Formation;409
10.9.4;16.4 Anticrack Development and Faulting;411
10.9.5;16.5 Conclusions;419
10.9.6;References;419
10.10;Chapter 17. Chaos and Stability in the Earthquake Source;422
10.10.1;17.1 Introduction;422
10.10.2;17.2 Types of Lattice Defects in the Earthquake Source;423
10.10.3;17.3 Chaos in the Earthquake Source: Observational Evidence;426
10.10.4;17.4 Modeling the Defect Interactions;427
10.10.5;17.5 Stability;434
10.10.6;17.6 Statistical Approach;439
10.10.7;17.7 Concluding Discussion;443
10.10.8;References;444
10.11;Chapter 18. Micromorphic Continuum and Fractal Properties of Faults and Earthquakes;448
10.11.1;18.1 Introduction;448
10.11.2;18.2 Micromorphic Continuum;449
10.11.3;18.3 Rotational Effects at the Epicenter Zones;451
10.11.4;18.4 Equation of Equilibrium in Terms of Displacements: Navier Equation and Laplace Equations;452
10.11.5;18.5 Propagation of Deformation along Elastic Plate Boundaries Overlying a Viscoelastic Foundation: Macroscale Governing Equation;454
10.11.6;18.6 Navier Equation, Laplace Field, and Fractal Pattern Formation of Fracturing;456
10.11.7;18.7 Size Distributions of Fractures in the Lithosphere;457
10.11.8;18.8 Relationship between Two Fractal Dimensions;457
10.11.9;18.9 Application of Scaling Laws to Crustal Deformations;458
10.11.10;18.10 Discussion;460
10.11.11;References;461
10.12;Chapter 19. Physical and Chemical Properties Related to Defect Structure of Oxides and Silicates Doped with Water and Carbon Dioxide;464
10.12.1;19.1 Introduction;464
10.12.2;19.2 General Properties of Magnesium and Other Metal Oxides;465
10.12.3;19.3 Symbols and Classification of Defects in Magnesium Oxide;468
10.12.4;19.4 Hydrogen and Peroxy Group Formation;471
10.12.5;19.5 Atomic Carbon in MgO Crystals;474
10.12.6;19.6 Dissolution of CO2 in MgO;476
10.12.7;19.7 Dissolution of O2 in MgO;476
10.12.8;19.8 Mechanism of Water Dissolution in Minerals;478
10.12.9;19.9 Formation of Peroxy Ions and Positive Holes in Silicates;480
10.12.10;References;481
11;PART IV: ELECTRIC AND MAGNETIC FIELDS RELATED TO DEFECT DYNAMICS;484
11.1;Chapter 20. Electric Polarization Related to Defects and Transmission of the Related Signals;486
11.1.1;20.1 Generation of Electric Signals in Ionic Crystals;486
11.1.2;20.2 Analytical Calculations for the Transmission of Electric Signals;493
11.1.3;20.3 Numerical Calculations;512
11.1.4;20.4 Conclusions;521
11.1.5;References;521
11.2;Chapter 21. Laboratory Investigation of the Electric Signals Preceding the Fracture of Crystalline Insulators;524
11.2.1;21.1 Introduction;524
11.2.2;21.2 Experimental Setup;525
11.2.3;21.3 Results;528
11.2.4;21.4 Interpretation;536
11.2.5;21.5 Conclusions;538
11.2.6;References;539
11.3;Chapter 22. Diffusion and Desorption of O- Radicals: Anomalies of Electric Field, Electric Conductivity, and Magnetic Susceptibility as Related to Earthquake Processes;542
11.3.1;22.1 Introduction;542
11.3.2;22.2 Water Dissolved in the Earth's Mantle;543
11.3.3;22.3 Emission of O- Radicals;544
11.3.4;22.4 Hole Electric Current and Conductivity Anomalies;545
11.3.5;22.5 Earthquake-Related Effects;550
11.3.6;22.6 Paramagnetic Anomaly;551
11.3.7;22.7 Diffusion of O° and Other Charge Carriers;552
11.3.8;References;556
11.4;Chapter 23. Electric and Electromagnetic Fields Related to Earthquake Formation;558
11.4.1;23.1 Introduction;558
11.4.2;23.2 Charged Dislocations and Thermodynamic Equilibrium of Charges;559
11.4.3;23.3 Electric Field Caused by Polarization and Motion of Charge Carriers;560
11.4.4;23.4 Dipole Moments and Electromagnetic Field Radiation;567
11.4.5;23.5 Simulations of Electric Current Generation and of Electromagnetic Fields;568
11.4.6;23.6 Discussion;571
11.4.7;References;573
11.5;Chapter 24. Tectono- and Chemicomagnetic Effects in Tectonically Active Regions;576
11.5.1;24.1 Introduction;576
11.5.2;24.2 Finslerian Continuum Mechanics for Magnetic Material Bodies;576
11.5.3;24.3 Reversible Modeling for Piezomagnetization;579
11.5.4;24.4 A Tectonomagnetic Model for Fault Creep;579
11.5.5;24.5 Chemical Reactions and Magnetic Properties of Rocks by Irreversible Thermodynamics;581
11.5.6;24.6 Geomagnetic Field Anomaly by the Induced Magnetization Changes;582
11.5.7;24.7 Implications for Tectono- and Chemicomagnetic Effects in Tectonically Active Regions;583
11.5.8;References;585
12;PART V: THERMODYNAMICS OF MULTICOMPONENT CONTINUA;588
12.1;Chapter 25. Thermodynamics of Multicomponent Continua;590
12.1.1;25.1 Multicomponent Models in Geophysics;590
12.1.2;25.2 Thermodynamical Foundations of Fluid Mixtures;591
12.1.3;25.3 Some Models of Porous Materials;607
12.1.4;25.4 On Constraints in Models of Porous Materials;641
12.1.5;25.5 Wave Propagation in Porous Materials;654
12.1.6;25.6 Concluding Remarks;675
12.1.7;References;676
13;Index;680
14;Previous Volumes in Series;694