Tatarenko | Game-Theoretic Learning and Distributed Optimization in Memoryless Multi-Agent Systems | Buch | 978-3-319-65478-2 | sack.de

Buch, Englisch, 171 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 4026 g

Tatarenko

Game-Theoretic Learning and Distributed Optimization in Memoryless Multi-Agent Systems


1. Auflage 2017
ISBN: 978-3-319-65478-2
Verlag: Springer International Publishing

Buch, Englisch, 171 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 4026 g

ISBN: 978-3-319-65478-2
Verlag: Springer International Publishing


This book presents new efficient methods for optimization in realistic large-scale, multi-agent systems. These methods do not require the agents to have the full information about the system, but instead allow them to make their local decisions based only on the local information, possibly obtained during communication with their local neighbors. The book, primarily aimed at researchers in optimization and control, considers three different information settings in multi-agent systems: oracle-based, communication-based, and payoff-based. For each of these information types, an efficient optimization algorithm is developed, which leads the system to an optimal state. The optimization problems are set without such restrictive assumptions as convexity of the objective functions, complicated communication topologies, closed-form expressions for costs and utilities, and finiteness of the system’s state space. 

Tatarenko Game-Theoretic Learning and Distributed Optimization in Memoryless Multi-Agent Systems jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Introduction and Research Motivation.- Backgrounds and Formulation of Contributions.- Logit Dynamics in Potential Games with Memoryless Players.- Stochastic Methods in Distributed Optimization and Game-Theoretic Learning.- Conclusion.- Appendix.


Tatiana Tatarenko received her Ph.D. from the Control Methods and Robotics Lab at the Technical University of Darmstadt, Germany in 2017. In 2011, she graduated with honors in Mathematics, focusing on statistics and stochastic processes, from Lomonosov Moscow State University, Russia. Her main research interests are in the fields of distributed optimization, game-theoretic learning, and stochastic processes in networked multi-agent systems. Currently, Dr. Tatarenko is a research assistant at TU Darmstadt, where she teaches and supervises students. 



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.