Tari / Wu / Li | Algorithms and Architectures for Parallel Processing | Buch | 978-981-97-0797-3 | sack.de

Buch, Englisch, 504 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 791 g

Reihe: Lecture Notes in Computer Science

Tari / Wu / Li

Algorithms and Architectures for Parallel Processing

23rd International Conference, ICA3PP 2023, Tianjin, China, October 20-22, 2023, Proceedings, Part III
2024
ISBN: 978-981-97-0797-3
Verlag: Springer Nature Singapore

23rd International Conference, ICA3PP 2023, Tianjin, China, October 20-22, 2023, Proceedings, Part III

Buch, Englisch, 504 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 791 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-981-97-0797-3
Verlag: Springer Nature Singapore


The 7-volume set LNCS 14487-14493 constitutes the proceedings of the 23rd International Conference on Algorithms and Architectures for Parallel Processing, ICA3PP 2023, which took place in Tianjin, China, during October, 2023.

The 145 full papers included in this book were carefully reviewed and selected from 439 submissions. ICA3PP covers many dimensions of parallel algorithms and architectures; encompassing fundamental theoretical approaches; practical experimental projects; and commercial components and systems.

Tari / Wu / Li Algorithms and Architectures for Parallel Processing jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Addressing Coupled Constrained Reinforcement Learning via Interative Iteration Design.- A Path Planning and Obstacle Avoidance Method for USV based on Dynamic-Target APF Algorithm in Edge.- Node-Disjoint Paths in Balanced Hypercubes with Application to Fault-Tolerant Routing.- Performance Evaluation of Spark, Ray and MPI: A Case Study on Long Read Alignment Algorithm.- Fairness Analysis and Optimization of BBR Congestion Control Algorithm.- Accelerating QUIC with AF_XDP.- Segmenta: Pipelined BFT Consensus with Slicing Broadcast.- Synthetic Data Generation for Differential Privacy Using Maximum Weight Matching.- Approximate Multicast Coflow Scheduling in Reconfigurable Data Center Networks.- DAS a DRAM-based Annealing System for Solving Large-Scale Combinatorial Optimization Problems.- Inductive Graph Neural Network for Key class identification in software system.- Spatio-temporal Fusion based Low-loss Video Compression Algorithm for UAVs with Limited Processing Capability.- CRAFT: Common Router Architecture For Throughput Optimization.- A Cross-Chain System Supports Verifiable Complete Data Provenance Queries.- Enabling Traffic-differentiated Load Balancing for Datacenter Networks.- Deep Reinforcement Learning based Load Balancing for Heterogeneous Traffic in Datacenter Networks.- Adaptive Routing for Datacenter Networks Using Ant Colony Optimization.- MPC: a novel internal clustering validity index based on midpoint-involved distance.- HAECN: Hierarchical Automatic ECN Tuning with Ultra-low Overhead in Datacenter.- An Android Malware Detection Method based on Met a path Aggregated Graph Neural Network.- A Joint Resource Allocation and Task Offloading Algorithm in Satellite Edge Computing.- gGMED: Towards GPU Accelerated Geometric Modeling Evaluation and Derivative Processes.- Parallelized ADMM with General Objectives for Deep Learning.- Multi-view Neighbor-enriched Contrastive Learning Framework for Bundle Recommendation.- Efficient Respiration Rate Estimation Based on MIMO mmWave Radar.- Running serverless function on resource fragments in data center.- IKE: Threshold Key Escrow Service with Intermediary Encryption.- A Constructive Method for Data Reduction and Imbalanced Sampling.- Period Extraction for Traffic Flow Prediction.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.