Buch, Englisch, 159 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 260 g
Buch, Englisch, 159 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 260 g
ISBN: 978-90-481-7622-9
Verlag: Springer Netherlands
Stroh formalism is a powerful mathematical method developed for the analysis of equations of anisotropic elasticity. This exposition introduces the essence of this formalism and demonstrates its effectiveness in both static and dynamic elasticity. The book gives a succinct introduction to Stroh formalism, discusses several important topics in static elasticity, and examines Rayleigh waves, a key topic in nondestructive evaluation, seismology, and materials science.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Physik Mechanik Klassische Mechanik, Newtonsche Mechanik
- Technische Wissenschaften Technik Allgemein Mathematik für Ingenieure
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Computeranwendungen in Wissenschaft & Technologie
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Naturwissenschaften Physik Mechanik Akustik, Schwingungsanalyse
- Mathematik | Informatik EDV | Informatik Professionelle Anwendung Computer-Aided Design (CAD)
- Technische Wissenschaften Technik Allgemein Computeranwendungen in der Technik
Weitere Infos & Material
Preface
Chapter 1: The Stroh Formalism for Static Elasticity
Section 1.1: Basic Elasticity
Section 1.2: Stroh's Eigenvalue Problem
Section 1.3: Rotational Invariance of Stroh Eigenvector in Reference Plane
Section 1.4: Forms of Basic Solutions When Stroh's Eigenvalue Problem is Degenerate
Section 1.5: Rotational Dependence When Stroh's Eigenvalue Problem is Degenerate
Section 1.6: Angular Average of Stroh's Eigenvalue Problem: Integral Formalism
Section 1.7: Surface Impedance Tensor
Section 1.8: Examples
Subsection 1.8.1: Isotropic Media
Subsection 1.8.2: Transversely Isotropic Media
Section 1.9: Justification of the Solutions in the Stroh Formalism
Section 1.10: Comments and References
Section 1.11: Exercises
Chapter 2: Applications in Static Elasticity
Section 2.1: Fundamental Solutions
Subsection 2.1.1: Fundamental Solution in the Stroh Formalism
Subsection 2.1.2: Formulas for Fundamental Solutions: Examples
Section 2.2: Piezoelectricity
Subsection 2.2.1: Basic Theory
Subsection 2.2.2: Extension of the Stroh Formalism
Subsection 2.2.3: Surface Impedance Tensor of Piezoelectricity
Subsection 2.2.4: Formula for Surface Impedance Tensor of Piezoelectricity: Example
Section 2.3: Inverse Boundary Value Problem
Subsection 2.3.1: Dirichlet to Neumann map
Subsection 2.3.2: Reconstruction of Elasticity Tensor
Subsubsection 2.3.2.1: Reconstruction of Surface Impedance Tensor from Localized Dirichlet to Neumann Map
Subsubsection 2.3.2.2: Reconstruction of Elasticity Tensor from Surface Impedance Tensor
Section 2.4: Comments and References
Section 2.5: Exercises
Chapter 3: Rayleigh waves in the Stroh formalism
Section 3.1: The Stroh Formalism for Dynamic Elasticity
Section 3.2: Basic Theorems and Integral Formalism
Section 3.3: Rayleigh Waves in Elastic Half-space
Section 3.4: Rayleigh Waves in Isotropic Elasticity
Section 3.5: Rayleigh Waves in Weakly Anisotropic Elastic Media
Section 3.6: Rayleigh Waves in Anisotropic Elasticity
Subsection 3.6.1: Limiting Wave Solution
Subsection 3.6.2: Existence Criterion Based on S_3
Subsection 3.6.3: Existence Criterion Based on Z
Subsection 3.6.4: Existence Criterion Based on Slowness Sections
Section 3.7: Comments and References
Section 3.8: Exercises




