Tan / Shi | Data Mining and Big Data | Buch | 978-981-967177-9 | sack.de

Buch, Englisch, 267 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 441 g

Reihe: Communications in Computer and Information Science

Tan / Shi

Data Mining and Big Data

9th International Conference, DMBD 2024, Ho Chi Minh City, Vietnam, December 13-17, 2024, Proceedings, Part II
Erscheinungsjahr 2025
ISBN: 978-981-967177-9
Verlag: Springer

9th International Conference, DMBD 2024, Ho Chi Minh City, Vietnam, December 13-17, 2024, Proceedings, Part II

Buch, Englisch, 267 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 441 g

Reihe: Communications in Computer and Information Science

ISBN: 978-981-967177-9
Verlag: Springer


This two-volume set, CCIS 2356 and CCIS 2357, constitutes the refereed proceedings of the 9th International Conference on Data Mining and Big Data, DMBD 2024, held in Ho Chi Minh City, Vietnam, in December 2024.

The 46 full papers presented in these volumes were carefully reviewed and selected from 93 submissions. They are organized under the following topical sections:

Part I : Machine Learning Methods; Data Mining Methods; Detection Methods.

Part II : Clustering Methods; Knowledge Graph; UAV Applications; Large Languange Models and Applications; Multi-Criterion Models and Applications.

Tan / Shi Data Mining and Big Data jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


.- Clustering Methods.

.- Data-Driven Open Finance: A Novel Architecture for Financial Inclusion in Developing Countries.

.- Stock Trend Prediction Based on Complex Network and Sentiment Analysis.

.- Three-way Clustering Based on Improved DPC Algorithm.

.- An Effective Parameter Tuning Technique for Plain and Scalable Spectral Clustering Methods.

.- Randomly Synergistic Data Augmentation Based Convolutional Neural Networks for Chinese Herbal Medicine Recognition.

.- Classification of Agricultural Data using MultiLayer Extreme Learning Machine with Fuzzy Kernel Function.

.- Knowledge Graph.

.- Med-RAIK: Interpretable Medication Recommendation Model Augmented by Integrating Knowledge Graph.

.- Research on the Implementation Mechanism of Dynamic Ontology in Knowledge Graph.

.- QuatRE: Knowledge Graph Embeddings via Relation Rotation in Quaternion Space.

.- Research on the Architecture of Software-Defined Decision-Making Operating System Based on Dynamic Ontology.

.- Decomposition and Generation Method of Task Data Requirement List Based on Graph Model.

.- UAV Applications.

.- Adaptive Dynamic Multi-Objective Trajectory Optimization for UAV-enabled Wireless Powered Communication Networks.

.- Improved DETR for Pedestrian Detection from the perspective of UAV.

.- A Gaussian Function-Based Masking Method for UAV Target Tracking.

.- Large Languange Models and Applications.

.- Domain-Specific Information Extraction in Chinese with Pre-Trained Language Models: An Exploration Report.

.- Large Language Model-based Automatic Generation Method for Test Cases Across Multiple Programming Language Types.

.- Distractor Generation for Multiple-Choice Question Using Existing Distractor.

.- Short Text Topic Modeling with Vector Quantization.

.- Multi-Criterion Models and Applications.

.- Controlled Causal Hallucinations Can Estimate Phantom Nodes in Multiexpert Mixtures of Fuzzy Cognitive Maps.

.- Enhanced Image Captioning Model Using Winograd Convolution and Multi-objective Bayesian Optimization.

.- Hybridizing Earthquake Dynamics-based Optimization with Multiple Adaptative Differential Evolution: Towards a Faster Convergence Metaheuristic.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.