Tan / Gutmann / Reif | Wafer Level 3-D ICs Process Technology | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 410 Seiten

Reihe: Integrated Circuits and Systems

Tan / Gutmann / Reif Wafer Level 3-D ICs Process Technology


1. Auflage 2009
ISBN: 978-0-387-76534-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 410 Seiten

Reihe: Integrated Circuits and Systems

ISBN: 978-0-387-76534-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book focuses on foundry-based process technology that enables the fabrication of 3-D ICs. The core of the book discusses the technology platform for pre-packaging wafer lever 3-D ICs. However, this book does not include a detailed discussion of 3-D ICs design and 3-D packaging. This is an edited book based on chapters contributed by various experts in the field of wafer-level 3-D ICs process technology. They are from academia, research labs and industry.

Tan / Gutmann / Reif Wafer Level 3-D ICs Process Technology jetzt bestellen!

Weitere Infos & Material


1;Foreword;6
2;Preface;8
3;Contents;10
4;Contributors;12
5;1 Overview of Wafer-Level 3D ICs;16
5.1;1.1 Background and Introduction;16
5.2;1.2 Motivations -- A More than Moore Approach;18
5.2.1;1.2.1 Interconnect Bottleneck;18
5.2.2;1.2.2 Chip Form Factor;19
5.2.3;1.2.3 Heterogeneous Integration;19
5.2.4;1.2.4 Stacked CMOS;19
5.3;1.3 Classification of 3D ICs;20
5.3.1;1.3.1 Monolithic Approaches;21
5.3.2;1.3.2 Assembly Approaches;21
5.3.3;1.3.3 Wafer-Level 3D Design Opportunities;23
5.4;1.4 Organization of the Book;24
6;2 Monolithic 3D Integrated Circuits;27
6.1;2.1 Introduction;27
6.2;2.2 Three-Dimensional Circuits Using Large-Grain Upper Layers;28
6.2.1;2.2.1 Upper-Layer Recrystallization Techniques;28
6.2.1.1;2.2.1.1 Laser Recrystallization;28
6.2.1.2;2.2.1.2 Epitaxial Overgrowth and Solid-Phase Crystallization;29
6.2.2;2.2.2 Three-Dimensional Logic Process Architectures;30
6.2.2.1;2.2.2.1 Common-Gate Processes;30
6.2.2.2;2.2.2.2 Independent Gate Processes;31
6.3;2.3 Three-Dimensional Circuits Using Small-Grained Polysilicon Layers;33
6.3.1;2.3.1 SRAM;33
6.3.2;2.3.2 Nonvolatile Memory: Cross-Point Memories;34
6.3.2.1;2.3.2.1 Cross-Point Memory Architectures;34
6.3.2.2;2.3.2.2 Diode/Antifuse Cross-Point Memory: Technology;35
6.3.2.3;2.3.2.3 Diode/Antifuse Cross-Point Memory: Die Size Considerations;36
6.3.3;2.3.3 Nonvolatile Memory: TFT-SONOS;38
6.4;2.4 Non-Silicon Monolithic 3D Integrated Circuits;40
6.5;2.5 Summary;41
7;3 Stacked CMOS Technologies;44
7.1;3.1 Stacked Complementary Metal-Oxide Semiconductor Topology;44
7.2;3.2 Stacked CMOS Processes and Device Design;46
7.2.1;3.2.1 Layer-by-Layer Process;46
7.2.2;3.2.2 Simultaneous Multilayer Processing;47
7.2.2.1;3.2.2.1 Gate Definition of Lower Layers;47
7.2.2.2;3.2.2.2 Doping the Bottom Layer;48
7.2.2.3;3.2.2.3 Making Contact Between Two Active Layers;49
7.2.3;3.2.3 Layout Issues;50
7.3;3.3 Stacked CMOS on the Thin Film and the Substrate of a SOI Wafer;51
7.4;3.4 Stacked FinCMOS Technology;54
7.5;3.5 Summary;60
8;4 Wafer-Bonding Technologies and Strategies for 3D ICs;61
8.1;4.1 Introduction;61
8.2;4.2 Wafer-Bonding Equipment Overview;61
8.3;4.3 Surface Preparation Treatments;63
8.3.1;4.3.1 Surface Preparation Treatments -- Wet Chemistry;63
8.3.2;4.3.2 Surface Preparation Treatments -- Plasma Activation;65
8.3.3;4.3.3 Surface Preparation Treatments -- Combined Plasma and Wet Chemistry;66
8.3.4;4.3.4 Surface Preparation Treatments -- Vapor Cleaning;67
8.4;4.4 Bond Aligner -- Equipment Working Principle;70
8.5;4.5 Alignment Strategies;71
8.6;4.6 Wafer Transfer Fixtures;78
8.7;4.7 Wafer-Bonding Technology;81
8.7.1;4.7.1 Bond Chamber Design and Components;81
8.8;4.8 Wafer-Bonding Techniques for 3D;84
8.8.1;4.8.1 Silicon Direct Bonding;84
8.8.2;4.8.2 BCB Bonding;85
8.8.3;4.8.3 Coppert-to-Copper Diffusion Bonding;87
8.8.4;4.8.4 Eutectic Bonding;90
8.9;4.9 Bond Quality Testing;92
8.10;4.10 Summary;93
9;5 Through-Silicon Via Fabrication, Backgrind, and Handle Wafer Technologies;96
9.1;5.1 Introduction;96
9.2;5.2 Through-Silicon Vias Compared with Wirebonds;96
9.3;5.3 Through-Silicon Via Hole Formation;97
9.3.1;5.3.1 TSVs for Die-to-Wafer Stacking: Laser Drilling;98
9.3.2;5.3.2 TSVs for Die-to-Wafer Stacking: Etching;98
9.3.3;5.3.3 TSVs for Wafer-to-Wafer Stacking;100
9.4;5.4 Dielectric Liner for TSVs;101
9.5;5.5 Tungsten Via Fill and Polish;103
9.5.1;5.5.1 Contact/Seed/CVD Tungsten Depositions;103
9.6;5.6 Copper Via Fill;103
9.6.1;5.6.1 Barrier and Seed Layers for Copper Plating;103
9.6.2;5.6.2 Electroplating Copper;105
9.6.3;5.6.3 Chemical--Mechanical Polish (CMP) of Copper;106
9.7;5.7 Wafer Thinning;106
9.7.1;5.7.1 Backgrind;106
9.7.2;5.7.2 Wet Etching Silicon to Thin the Wafer and Relieve Stress from Grinding;109
9.7.3;5.7.3 Fracturing Wafers at a Hydrogen Implant-Damaged Plane;109
9.8;5.8 Singulation;110
9.9;5.9 Handle Wafer Technologies;112
9.9.1;5.9.1 Substrate;113
9.9.2;5.9.2 Bonding Layer;114
9.9.2.1;5.9.2.1 Bond Strength;114
9.9.2.2;5.9.2.2 Maximum-Use Temperature;114
9.9.2.3;5.9.2.3 Chemical Stability;114
9.9.2.4;5.9.2.4 Vacuum Compatibility;115
9.9.2.5;5.9.2.5 Final Thickness and Planarity;115
9.9.2.6;5.9.2.6 Releasibility;115
9.9.3;5.9.3 Optional Release Layer;116
9.10;5.10 Wafer-Bonding Methods;116
9.10.1;5.10.1 Thermoplastic Materials;116
9.10.2;5.10.2 UV-Curable Materials;118
9.10.3;5.10.3 Laminates;119
9.10.4;5.10.4 Metal Based;120
9.11;5.11 Handle Wafer Use;120
9.12;5.12 Wafer Debonding Methods;122
9.12.1;5.12.1 Chemical Methods;122
9.12.2;5.12.2 Thermal Methods;122
9.12.3;5.12.3 Laser Treatment;124
9.13;5.13 Post-release Treatments;124
9.14;5.14 Summary, Conclusions, and Future Projections;124
10;6 Cu Wafer Bonding for 3D IC Applications;128
10.1;6.1 Introduction;128
10.2;6.2 Classification of Cu-Bonding Techniques;128
10.2.1;6.2.1 Surface-Activated Cu Bonding;128
10.2.2;6.2.2 Thermal Compression Cu Bonding;129
10.3;6.3 Fundamental Properties of Cu Bonding;129
10.3.1;6.3.1 Morphology of Cu-Bonded Layer;130
10.3.2;6.3.2 Oxide Examination of Cu-Bonded Layer;130
10.3.3;6.3.3 Microstructure Evolution During Cu Bonding;131
10.3.4;6.3.4 Orientation Evolution During Cu Bonding;132
10.4;6.4 Cu-Bonding Development;133
10.4.1;6.4.1 Structural Design;133
10.4.2;6.4.2 Copper Pad Fabrication;134
10.4.3;6.4.3 Bond Parameters;134
10.5;6.5 Cu Bond Quality Characterization and Alignment Accuracy;135
10.6;6.6 Reliable Cu Bonding and Multilayer Stacking;137
10.7;6.7 Applications of Cu Wafer Bonding;139
10.8;6.8 Summary;140
11;7 Cu/Sn Solid-Liquid Interdiffusion Bonding;142
11.1;7.1 The Principle of Solid--Liquid Interdiffusion;143
11.1.1;7.1.1 Liquefaction and Liquid Phase Properties;144
11.1.1.1;7.1.1.1 Characteristics of Soldering with Thin Solder Layers;144
11.1.1.2;7.1.1.2 Hydrostatics of the Solder Pad;146
11.1.2;7.1.2 Metallurgy and Intermetallic Growth;147
11.1.2.1;7.1.2.1 Phase Front Propagation in Cu/Sn Diffusion Couples;148
11.1.2.2;7.1.2.2 Calculation of the Metal Pad Thickness;150
11.1.3;7.1.3 Process Conditions and Characteristics;151
11.1.3.1;7.1.3.1 Surface Metal Oxides;151
11.1.3.2;7.1.3.2 Parasitic Consumption of Reactive Solder;151
11.1.3.3;7.1.3.3 Wetting versus Intermetallic Growth;153
11.1.3.4;7.1.3.4 Electromigration;153
11.2;7.2 Chip-Stacking: The SOLID-F2F Process;154
11.2.1;7.2.1 Process Flow;155
11.2.2;7.2.2 Behavior of Underfill in Small Gaps;156
11.2.3;7.2.3 Self-Alignment;158
11.2.4;7.2.4 Reliability Results;158
11.2.4.1;7.2.4.1 Thermal Cycling;159
11.2.4.2;7.2.4.2 High-Temperature Storage;159
11.2.4.3;7.2.4.3 Corrosion;160
11.2.4.4;7.2.4.4 Electromigration;162
11.3;7.3 Three-Dimensional Integration: SLID for Multichip Stacking;163
11.3.1;7.3.1 Scheme with SLID and Backside Vias;164
11.3.1.1;7.3.1.1 Basic Considerations;164
11.3.1.2;7.3.1.2 Preprocessing;165
11.3.1.3;7.3.1.3 Processing;165
11.3.1.4;7.3.1.4 Stack Building;168
11.3.1.5;7.3.1.5 Results;169
11.3.2;7.3.2 Scheme with ICV-SLID Technology;170
11.3.2.1;7.3.2.1 Processes;170
11.3.2.2;7.3.2.2 Results;172
11.3.3;7.3.3 Scheme with Copper Bump Bonding;172
11.3.3.1;7.3.3.1 Process Scheme;173
11.3.3.2;7.3.3.2 CBB Process;173
11.4;7.4 Brief Discussion on W2W Versus C2W Schemes;175
11.5;7.5 Conclusion;176
12;8 An SOI-Based 3D Circuit Integration Technology;181
12.1;8.1 Introduction;181
12.2;8.2 Lincoln Laboratory's Wafer-Scale 3D Circuit Integration Technology;182
12.2.1;8.2.1 Three-Dimensional Fabrication Process;182
12.2.2;8.2.2 Three-Dimensional Enabling Technologies;184
12.2.3;8.2.3 Three-dimensional Technology Scaling;189
12.3;8.3 Transferred FDSOI Transistor and Device Properties;191
12.4;8.4 Multiproject Circuit Design and Layout in Lincoln Laboratory's 3D Technology;193
12.4.1;8.4.1 Three-Dimensional Design and Layout Practice;194
12.4.2;8.4.2 Computer-Aided Design Tool Refinements;194
12.4.3;8.4.3 Three-Dimensional Design Optimization;195
12.4.4;8.4.4 Wafer--Wafer Alignment Aids;196
12.4.5;8.4.5 Three-Dimensional Design and Submission Procedures;198
12.4.6;8.4.6 Three-Dimensinal Circuit Design Examples;198
12.5;8.5 Three-Dimensional Circuit and Device Results;201
12.5.1;8.5.1 Three-Dimensional-LADAR Chip;201
12.5.2;8.5.2 1024 1024 3D Visible Imager;203
12.5.3;8.5.3 Heterogeneous Integration;204
12.6;8.6 Summary;204
13;9 3D Fabrication Options for High-Performance CMOS Technology;207
13.1;9.1 3-D Technology;207
13.1.1;9.1.1 Introduction;207
13.1.2;9.1.2 Three-Dimensional Technology Landscape;208
13.1.3;9.1.3 Wafer-Level 3D Integration;209
13.1.4;9.1.4 IBM 3D Integration Approaches;211
13.1.4.1;9.1.4.1 Copper Bonding with TSVs for Processor/Memory Stacking;211
13.1.4.2;9.1.4.2 SOI-Based 3D Integration for Ultrahigh-Density and Device-Level Stacking;216
13.2;9.2 Future Development Activities for 3D Integration;222
13.2.1;9.2.1 Thermal Dissipation in Bonded Structures;222
13.2.2;9.2.2 Noise in 3D Integrated Structures;223
13.2.3;9.2.3 Bandwidth Utilization and Smart Power-Efficient Designs (Lower-Power Voltage Operations, Energy Efficiency);223
13.2.3.1;9.2.3.1 Bandwidth Advantages of 3D;223
13.2.4;9.2.4 Power-Efficient 3D Possibilities;224
13.3;9.3 Summary;225
14;10 3D Integration Based upon Dielectric Adhesive Bonding;228
14.1;10.1 Introduction;228
14.2;10.2 Adhesive Bonding Mechanisms and Dielectric Adhesives;229
14.2.1;10.2.1 Desired Properties of Polymer Adhesive Materials for Wafer Bonding;230
14.2.2;10.2.2 Adhesive Wafer-Bonding Technology;231
14.3;10.3 Wafer-Level 3D Integration Platforms Based upon Adhesive Bonding;234
14.3.1;10.3.1 Via-Last 3D Platform Using Blanket Adhesive Wafer Bonding and Cu Damascene Interstrata Interconnects;236
14.3.2;10.3.2 Via-First 3D Platform with Wafer-Bonding of Damascene-Patterned Metal/Adhesive Redistribution Layers;236
14.4;10.4 Impacts of Soft-Baked BCB and Partially Cured BCB;238
14.4.1;10.4.1 Thickness Uniformity of BCB Layers;239
14.4.2;10.4.2 BCB Bond Strength and Impact on Bonding Void and Defects;240
14.4.3;10.4.3 Impact on Wafer-to-Wafer Alignment Accuracy;241
14.5;10.5 Integrity Characterizations of Blanket Adhesive Wafer Bonding;242
14.5.1;10.5.1 Optical Inspection Using Glass Wafer;242
14.5.2;10.5.2 Bonding Strength Characterization Using Four-Point Bending;243
14.5.3;10.5.3 Thermal Cycling Test;245
14.5.4;10.5.4 Packaging Reliability Tests;245
14.5.5;10.5.5 Wafer Thinning;246
14.5.6;10.5.6 Electrical Characterization of Adhesive Wafer-Bonding Integrity;247
14.6;10.6 Integrity Characterizations of Patterned/Processed Adhesive Wafer Bonding;249
14.6.1;10.6.1 Partially Cured BCB for Copper Damascene Patterning;250
14.6.2;10.6.2 Bond Strength and Voids/Defects;251
14.6.3;10.6.3 Surface Topography of Damascene-Patterned Cu/BCB Layer;251
14.7;10.7 Feasibility Demonstrations of Wafer-Level 3D Integration;252
14.7.1;10.7.1 Via-Last 3D Platform Feasibility Demonstration;252
14.7.2;10.7.2 Via-First 3D Platform Feasibility Demonstration;254
14.8;10.8 Thermomechanical Modeling;257
14.9;10.9 General Discussions on 3D Platforms and Applications;259
14.10;10.10 Conclusions;261
15;11 Direct Hybrid Bonding;266
15.1;11.1 Introduction;266
15.2;11.2 The Direct Hybrid Bonding Process;268
15.2.1;11.2.1 TSV Die Preparation;268
15.2.2;11.2.2 Preparation of the Landing Surface: Dielectric Application and Patterning;270
15.3;11.3 Choice of Metal Bond Type and Dielectric;273
15.4;11.4 Collective Hybrid Bonding;274
15.4.1;11.4.1 Requirements for Pick-and-Place;275
15.4.2;11.4.2 Compliant Bonding;275
15.5;11.5 Summary;276
16;12 3D Memory;277
16.1;12.1 A Brief History of Memory;277
16.2;12.2 3D Memory By Many Means;277
16.2.1;12.2.1 3D Packaging;277
16.2.2;12.2.2 3D ICs;279
16.2.2.1;12.2.2.1 Separate Fabrication or Sequential Fabrication?;281
16.2.2.2;12.2.2.2 Wafer Scale or Device Scale?;282
16.3;12.3 DRAM;282
16.3.1;12.3.1 DRAM Manufacturing;282
16.3.2;12.3.2 Simplified DRAM Overview;283
16.3.3;12.3.3 DRAM Construction Issues;283
16.3.4;12.3.4 Array Efficiency;286
16.3.5;12.3.5 The Memory Wall;286
16.3.6;12.3.6 Repair and Redundancy, Test, and Reliability;287
16.3.7;12.3.7 3D Benefits in DRAM;289
16.4;12.4 Building 3D DRAM;289
16.4.1;12.4.1 Latency;290
16.4.2;12.4.2 Power;291
16.4.3;12.4.3 Reliability;291
16.4.4;12.4.4 Cost;292
16.4.4.1;12.4.4.1 Memory Wafer Processing;292
16.4.4.2;12.4.4.2 Array Efficiency;292
16.4.4.3;12.4.4.3 Testing;293
16.4.4.4;12.4.4.4 Improved Yield;293
16.4.5;12.4.5 Other Benefits of 3D Memory;294
16.5;12.5 Tezzaron 3D Process Flow;294
16.6;12.6 Embedded Memory versus Stacked Memory;297
16.7;12.7 3D Futures;298
17;13 Circuit Architectures for 3D Integration;300
17.1;13.1 Introduction;300
17.2;13.2 Three-Dimensional SOC;301
17.2.1;13.2.1 Parasitic Coupling;302
17.3;13.3 Digital Systems;304
17.3.1;13.3.1 Imager Systems;304
17.3.2;13.3.2 Interconnect-Dominated Systems;305
17.4;13.4 Nanoscale/Microscale Integration;308
17.5;13.5 Comparison Between 3D Integration and Planar Packaging;311
18;14 Thermal Challenges of 3D ICs;313
18.1;14.1 Introduction;313
18.2;14.2 Thermal Effects in 3D ICs in the Nanometer Regime;315
18.2.1;14.2.1 Impact of Heat on Device and Interconnect Reliability;315
18.2.2;14.2.2 Analytical Average Die Temperature Model;315
18.2.3;14.2.3 Origin and Significance of Electrothermal Couplings;317
18.3;14.3 Self-Consistent Temperature Estimation for 3D ICs;319
18.3.1;14.3.1 Typical Chip Package Structure and Heat Transfer Mechanisms;320
18.3.2;14.3.2 Full-Chip Package Thermal Model;321
18.3.3;14.3.3 Numerical Approach and Methodology Overview;323
18.3.4;14.3.4 Setup and Implementation: An Example of a 2D IC Thermal Profile Estimation;326
18.3.5;14.3.5 3D IC Thermal Profile Estimation: Analysis and Implications;329
18.4;14.4 Implications and Opportunities for 3D IC Thermal Management;333
18.5;14.5 Summary;335
19;15 Status and Outlook;339
19.1;15.1 Introduction;339
19.2;15.2 Technology and Applications;339
19.2.1;15.2.1 System Integration;339
19.2.2;15.2.2 Vertical Interconnect;341
19.2.2.1;15.2.2.1 Vertical Interconnect Density and Applications;342
19.2.2.2;15.2.2.2 Interstratum Connections;343
19.2.2.3;15.2.2.3 Through-Stratum Vias;343
19.2.3;15.2.3 Bonded Vertical Integration Technologies;345
19.2.3.1;15.2.3.1 Alignment and Bonding;345
19.2.3.2;15.2.3.2 Stratum Thinning;347
19.2.4;15.2.4 Design;347
19.3;15.3 Packaging of 3D Devices;349
19.3.1;15.3.1 Signal, Power, and Ground Congestion;349
19.3.2;15.3.2 Thermal Congestion and Heat Dissipation;350
19.3.3;15.3.3 Reliability of Packaged 3D Devices;350
19.4;15.4 Market and Economics of 3D;351
19.4.1;15.4.1 Technology Maturity;351
19.4.2;15.4.2 Cost;351
19.5;15.5 Market Projections;354
20;Index;359



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.