Tamhane | Predictive Analytics | Buch | 978-1-118-94889-7 | sack.de

Buch, Englisch, 384 Seiten, Format (B × H): 179 mm x 260 mm, Gewicht: 832 g

Tamhane

Predictive Analytics

Parametric Models for Regression and Classification Using R
1. Auflage 2020
ISBN: 978-1-118-94889-7
Verlag: Wiley

Parametric Models for Regression and Classification Using R

Buch, Englisch, 384 Seiten, Format (B × H): 179 mm x 260 mm, Gewicht: 832 g

ISBN: 978-1-118-94889-7
Verlag: Wiley


Provides a foundation in classical parametric methods of regression and classification essential for pursuing advanced topics in predictive analytics and statistical learning

This book covers a broad range of topics in parametric regression and classification including multiple regression, logistic regression (binary and multinomial), discriminant analysis, Bayesian classification, generalized linear models and Cox regression for survival data. The book also gives brief introductions to some modern computer-intensive methods such as classification and regression trees (CART), neural networks and support vector machines.

The book is organized so that it can be used by both advanced undergraduate or masters students with applied interests and by doctoral students who also want to learn the underlying theory. This is done by devoting the main body of the text of each chapter with basic statistical methodology illustrated by real data examples. Derivations, proofs and extensions are relegated to the Technical Notes section of each chapter, Exercises are also divided into theoretical and applied. Answers to selected exercises are provided. A solution manual is available to instructors who adopt the text.

Data sets of moderate to large sizes are used in examples and exercises. They come from a variety of disciplines including business (finance, marketing and sales), economics, education, engineering and sciences (biological, health, physical and social). All data sets are available at the book’s web site. Open source software R is used for all data analyses. R codes and outputs are provided for most examples. R codes are also available at the book’s web site.

Predictive Analytics: Parametric Models for Regression and Classification Using R is ideal for a one-semester upper-level undergraduate and/or beginning level graduate course in regression for students in business, economics, finance, marketing, engineering, and computer science. It is also an excellent resource for practitioners in these fields.

Tamhane Predictive Analytics jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Preface xiii

Acknowledgments xv

Abbreviations xvii

About the companion website xxi

1 Introduction 1

1.1 Supervised versus unsupervised learning 2

1.2 Parametric versus nonparametric models 3

1.3 Types of data 4

1.4 Overview of parametric predictive analytics 5

2 Simple linear regression and correlation 7

2.1 Fitting a straight line 9

2.1.1 Least squares (LS) method 9

2.1.2 Linearizing transformations 11

2.1.3 Fitted values and residuals 13

2.1.4 Assessing goodness of fit 14

2.2 Statistical inferences for simple linear regression 17

2.2.1 Simple linear regression model 17

2.2.2 Inferences on ß0 and ß1 18

2.2.3 Analysis of variance for simple linear regression 19

2.2.4 Pure error versus model error 20

2.2.5 Prediction of future observations 21

2.3 Correlation analysis 24

2.3.1 Bivariate normal distribution 26

2.3.2 Inferences on correlation coefficient 27

2.4 Modern extensions 28

2.5 Technical notes 29

2.5.1 Derivation of the LS estimators 29

2.5.2 Sums of squares 30

2.5.3 Distribution of the LS estimators 30

2.5.4 Prediction interval 32

Exercises 32

3 Multiple linear regression: basics 37

3.1 Multiple linear regression model 39

3.1.1 Model in scalar notation 39

3.1.2 Model in matrix notation 40

3.2 Fitting a multiple regression model 41

3.2.1 Least squares (LS) method 41

3.2.2 Interpretation of regression coefficients 45

3.2.3 Fitted values and residuals 45

3.2.4 Measures of goodness of fit 47

3.2.5 Linearizing transformations 48

3.3 Statistical inferences for multiple regression 49

3.3.1 Analysis of variance for multiple regression 49

3.3.2 Inferences on regression coefficients 51

3.3.3 Confidence ellipsoid for the ß vector 52

3.3.4 Extr


Ajit C. Tamhane, PhD, is Professor of Industrial Engineering & Management Sciences with a courtesy appointment in Statistics at Northwestern University. He is a fellow of the American Statistical Association, Institute of Mathematical Statistics, American Association for Advancement of Science and an elected member of the International Statistical Institute.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.