Tame | Approaches to Entropy | Buch | 978-981-13-4766-5 | sack.de

Buch, Englisch, 202 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 335 g

Tame

Approaches to Entropy


Softcover Nachdruck of the original 1. Auflage 2019
ISBN: 978-981-13-4766-5
Verlag: Springer Nature Singapore

Buch, Englisch, 202 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 335 g

ISBN: 978-981-13-4766-5
Verlag: Springer Nature Singapore


This is a book about thermodynamics, not history, but it adopts a semi-historical approach in order to highlight different approaches to entropy. The book does not follow a rigid temporal order of events, nor it is meant to be comprehensive. It includes solved examples for a solid understanding. The division into chapters under the names of key players in the development of the field is not intended to separate these individual contributions entirely, but to highlight their different approaches to entropy. This structure helps to provide a different view-point from other text-books on entropy.

Tame Approaches to Entropy jetzt bestellen!

Zielgruppe


Upper undergraduate


Autoren/Hrsg.


Weitere Infos & Material



1 General thermodynamics 1.1 Mechanics 1.2 The First Law: conservation of energy 1.3     The Ideal Gas
 2 Carnot and Clausius 2.1 The Carnot cycle 2.2 The Second Law 2.3 The Gibbs free energy G 2.4 The Helmholtz free energy F2.5 Available work 2.6 Maxwell’s  relations 2.7 The importance of entropy 2.8 Summary 
3 Maxwell and Boltzmann 3.1 The  Maxwell-Boltzmann  distribution 3.2 The relationship between entropy and probability 3.3 Uses of the partition function 3.4 The H theorem 3.5 Early critics of the H theorem 3.6 Modern critics of the H theorem 3.7   Conclusions 
4 Gibbs 4.1 General notions 4.2 Phase 4.3 The Liouville theorem 4.4 The canonical distribution 4.5 Analogies with thermodynamics 4.6 Gibbs Entropy 4.7 Variation of energy 4.8 Chemical potential 4.8.1     Small systems 4.9 Summary
5 Partition functions and ensembles 5.1 Microcanonical ensemble 5.2 Canonical  ensemble 5.3 Grand canonical ensemble 5.4 Isobaric ensemble 5.5 Molecular partition function 5.6 Distinguishable particles 5.7 Quantum statistics 5.8 Rotational partition function of linear molecules
6 Planck 6.1 Radiation 6.2 Coarse graining 6.3 The Sackur-Tetrode equation 6.4 Gibbs versus Boltzmann 6.5 Entropy is not anthropomorphic
 7 Einstein 7.1 Kinetic theory of thermal equilibrium 7.2 The mechanical meaning of Einstein’s h 7.3 A mechanical theory of the second law 7.4 The significance of ? 7.5 Application to radiation 7.6 The entropy of radiation 7.7 Summary
 8 Shannon 8.1 Probability and information 8.2 Maximum entropy 8.3 Bayes’s theorem 8.4 Maxwell’s  demon 8.5 Difficulties with Szilard’s principle 8.6 Szilard’s engine and quantum measurements 8.7 Landauer’s principle 8.8 Subjectivity 8.9 The fluctuation theorem 8.10  Summary
9 Nernst 9.1 Chemical potential 9.2 The equilibrium constant 9.3 Fixing a zero point to entropy 9.4 Modern forms of the Third Law 9.5 Attaining absolute zero 9.6 Negative temperatures 
10 On Entropy as Mixed-up-ness 10.1 Gibbs’s paradox 10.2 Gibbs’s paradox from a statistical viewpoint 10.3 von Neumann entropy 10.4 Entropy as information 10.5 Biological systems 10.6 Economics 10.7 Conclusions
11. ProblemsA. Exact differentials and integrating factorsB. Classical mechanicsC. ErgodicityD. Equipartition of energy


Jeremy R. H. Tame is currently a professor at the Drug Design Laboratory at Yokohama City University in Japan. After graduating from Cambridge University in England, he moved to the MRC Laboratory of Molecular Biology. Following a short period of work with Nobel Prize winner Max Perutz, he joined Kiyoshi Nagai’s group. His group focuses on biophysical studies of how proteins fold and function. His other research interests include x-ray crystallography, protein design and thermodynamics of protein–ligand binding.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.