Buch, Englisch, 476 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 907 g
Buch, Englisch, 476 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 907 g
Reihe: Chapman & Hall/CRC Pure and Applied Mathematics
ISBN: 978-0-8247-0385-1
Verlag: Taylor & Francis
An introduction to differential geometry with applications to mechanics and physics. It covers topology and differential calculus in banach spaces; differentiable manifold and mapping submanifolds; tangent vector space; tangent bundle, vector field on manifold, Lie algebra structure, and one-parameter group of diffeomorphisms; exterior differential forms; Lie derivative and Lie algebra; n-form integration on n-manifold; Riemann geometry; and more. It includes 133 solved exercises.
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Biowissenschaften Angewandte Biologie Biomathematik
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Mathematik | Informatik Mathematik Geometrie Differentialgeometrie
- Naturwissenschaften Physik Physik Allgemein Geschichte der Physik
- Naturwissenschaften Physik Physik Allgemein Experimentalphysik
Weitere Infos & Material
Part 1 Topology and differential calculus requirements: topology; differential calculus in Banach spaces; exercises. Part 2 Manifolds: introduction; differential manifolds; differential mappings; submanifolds; exercises. Part 3 Tangent vector space: tangent vector; tangent space; differential at a point; exercises. Part 4 Tangent bundle-vector field-one-parameter group lie algebra: introduction; tangent bundle; vector field on manifold; lie algebra structure; one-parameter group of diffeomorphisms; exercises. Part 5 Cotangent bundle-vector bundle of tensors: cotangent bundle and covector field; tensor algebra; exercises. Part 6 Exterior differential forms: exterior form at a point; differential forms on a manifold; pull-back of a differential form; exterior differentiation; orientable manifolds; exercises. Part 7 Lie derivative-lie group: lie derivative; inner product and lie derivative; Frobenius theorem; exterior differential systems; invariance of tensor fields; lie group and algebra; exercises. Part 8 Integration of forms: n-form integration on n-manifold; integral over a chain; Stokes' theorem; an introduction to cohomology theory; integral invariants; exercises. Part 9 Riemann geometry: Riemannian manifolds.




