Talbi | Metaheuristics | E-Book | sack.de
E-Book

E-Book, Englisch, 624 Seiten, E-Book

Reihe: Wiley Series on Parallel and Distributed Computing

Talbi Metaheuristics

From Design to Implementation
1. Auflage 2009
ISBN: 978-0-470-49690-9
Verlag: John Wiley & Sons
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

From Design to Implementation

E-Book, Englisch, 624 Seiten, E-Book

Reihe: Wiley Series on Parallel and Distributed Computing

ISBN: 978-0-470-49690-9
Verlag: John Wiley & Sons
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



A unified view of metaheuristics
This book provides a complete background on metaheuristics andshows readers how to design and implement efficient algorithms tosolve complex optimization problems across a diverse range ofapplications, from networking and bioinformatics to engineeringdesign, routing, and scheduling. It presents the main designquestions for all families of metaheuristics and clearlyillustrates how to implement the algorithms under a softwareframework to reuse both the design and code.
Throughout the book, the key search components of metaheuristicsare considered as a toolbox for:
* Designing efficient metaheuristics (e.g. local search, tabusearch, simulated annealing, evolutionary algorithms, particleswarm optimization, scatter search, ant colonies, bee colonies,artificial immune systems) for optimization problems
* Designing efficient metaheuristics for multi-objectiveoptimization problems
* Designing hybrid, parallel, and distributed metaheuristics
* Implementing metaheuristics on sequential and parallelmachines
Using many case studies and treating design and implementationindependently, this book gives readers the skills necessary tosolve large-scale optimization problems quickly and efficiently. Itis a valuable reference for practicing engineers and researchersfrom diverse areas dealing with optimization or machine learning;and graduate students in computer science, operations research,control, engineering, business and management, and appliedmathematics.

Talbi Metaheuristics jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Preface.
Acknowledgments.
Glossary.
1 Common Concepts for Metaheuristics.
1.1 Optimization Models.
1.2 Other Models for Optimization.
1.3 Optimization Methods.
1.4 Main Common Concepts for Metaheuristics.
1.5 Constraint Handling.
1.6 Parameter Tuning.
1.7 Performance Analysis of Metaheuristics.
1.8 Software Frameworks for Metaheuristics.
1.9 Conclusions.
1.10 Exercises.
2 Single-Solution Based Metaheuristics.
2.1 Common Concepts for Single-Solution BasedMetaheuristics.
2.2 Fitness Landscape Analysis.
2.3 Local Search.
2.4 Simulated Annealing.
2.5 Tabu Search.
2.6 Iterated Local Search.
2.7 Variable Neighborhood Search.
2.8 Guided Local Search.
2.9 Other Single-Solution Based Metaheuristics.
2.10 S-Metaheuristic Implementation Under ParadisEO.
2.11 Conclusions.
2.12 Exercises.
3 Population-Based Metaheuristics.
3.1 Common Concepts for Population-Based Metaheuristics.
3.2 Evolutionary Algorithms.
3.3 Common Concepts for Evolutionary Algorithms.
3.4 Other Evolutionary Algorithms.
3.5 Scatter Search.
3.6 Swarm Intelligence.
3.7 Other Population-Based Methods.
3.8 P-metaheuristics Implementation Under ParadisEO.
3.9 Conclusions.
3.10 Exercises.
4 Metaheuristics for Multiobjective Optimization.
4.1 Multiobjective Optimization Concepts.
4.2 Multiobjective Optimization Problems.
4.3 Main Design Issues of Multiobjective Metaheuristics.
4.4 Fitness Assignment Strategies.
4.5 Diversity Preservation.
4.6 Elitism.
4.7 Performance Evaluation and Pareto Front Structure.
4.8 Multiobjective Metaheuristics Under ParadisEO.
4.9 Conclusions and Perspectives.
4.10 Exercises.
5 Hybrid Metaheuristics.
5.1 Hybrid Metaheuristics.
5.2 Combining Metaheuristics with Mathematical Programming.
5.3 Combining Metaheuristics with Constraint Programming.
5.4 Hybrid Metaheuristics with Machine Learning and DataMining.
5.5 Hybrid Metaheuristics for Multiobjective Optimization.
5.6 Hybrid Metaheuristics Under ParadisEO.
5.7 Conclusions and Perspectives.
5.8 Exercises.
6 Parallel Metaheuristics.
6.1 Parallel Design of Metaheuristics.
6.2 Parallel Implementation of Metaheuristics.
6.3 Parallel Metaheuristics for Multiobjective Optimization.
6.4 Parallel Metaheuristics Under ParadisEO.
6.5 Conclusions and Perspectives.
6.6 Exercises.
Appendix: UML and C++.
A.1 A Brief Overview of UML Notations.
A.2 A Brief Overview of the C++ Template Concept.
References.
Index.


EL-GHAZALI TALBI is a full Professor in Computer Science at the University of Lille (France), and head of the optimization group of the Computer Science Laboratory (L.I.F.L.). His current research interests are in the fields of metaheuristics, parallel algorithms, multi-objective combinatorial optimization, cluster and grid computing, hybrid and cooperative optimization, and application to bioinformatics, networking, transportation, and logistics. He is the founder of the conference META (International Conference on Metaheuristics and Nature Inspired Computing), and is head of the INRIA Dolphin project dealing with robust multi-objective optimization of complex systems.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.