Tajer / Perlaza / Poor | Advanced Data Analytics for Power Systems | Buch | 978-1-108-49475-5 | sack.de

Buch, Englisch, 598 Seiten, Format (B × H): 198 mm x 249 mm, Gewicht: 1270 g

Tajer / Perlaza / Poor

Advanced Data Analytics for Power Systems


Erscheinungsjahr 2021
ISBN: 978-1-108-49475-5
Verlag: Cambridge University Press

Buch, Englisch, 598 Seiten, Format (B × H): 198 mm x 249 mm, Gewicht: 1270 g

ISBN: 978-1-108-49475-5
Verlag: Cambridge University Press


Experts in data analytics and power engineering present techniques addressing the needs of modern power systems, covering theory and applications related to power system reliability, efficiency, and security. With topics spanning large-scale and distributed optimization, statistical learning, big data analytics, graph theory, and game theory, this is an essential resource for graduate students and researchers in academia and industry with backgrounds in power systems engineering, applied mathematics, and computer science.

Tajer / Perlaza / Poor Advanced Data Analytics for Power Systems jetzt bestellen!

Weitere Infos & Material


Introduction; Preface Ali Tajer, Samir M. Perlaza and H. Vincent Poor; 1. Learning power grid topologies Guido Cavraro, Vassilis Kekatos, Liang Zhang and Georgios B. Giannakis; 2. Probabilistic forecasting of power system and market operations Yuting Ji, Lang Tong and Weisi Deng; 3. Deep learning in power systems Yue Zhao and Baosen Zhang; 4. Estimating the system state and network model errors Ali Abur, Murat Gol and Yuzhang Lin; 5. Quickest detection and isolation of tranmission line outages Venugopal V. Veeravalli and Alejandro Dominguez-Garcia; 6. Active sensing for quickest anomaly detection Ali Tajer and Javad Heydari; 7. Random matrix theory for analyzing spatio-temporal data Robert Qiu, Xing He, Lei Chu and Xin Shi; 8. Graph-theoretic analysis of power grid robustness Dorcas Ofori-Boateng, Asim Kumer Dey, Yulia R. Gel and H. Vincent Poor; 9. Bayesian attacks Inaki Esnaola, Samir M Perlaza and Ke Sun; 10. Smart meter data privacy Giulio Giaconia, Deniz Gunduz and H. Vincent Poor; 11. Data quality and privacy enhancement Meng Wang and Joe H Chow; 12. Frequency estimation using voltage phasor angles revisited Danilo P. Mandic, Sithan Kanna, Yili Xia and Anthony G. Constantinides; 13. Graph signal processing for the power grid Anna Scaglione, Raksha Ramakrishna and Mahdi Jamei; 14. A sparse representation approach for anomaly identification Hao Zhu and Chen Chen; 15. Uncertainty-aware power systems operation Daniel Bienstock; 16. Distributed optimization for power and energy systems Emiliano Dall'Anese and Nikolaos Gatsis; 17. Distributed load management Changhong Zhao, Vijay Gupta and Ufuk Topcu; 18. Analytical models for emerging energy storage applications I. Safak Bayram and Michael Devetsikiotis; 19. Distributed power consumption scheduling Samson Lasaulce, Olivier Beaude and Mauricio Gonz´alez; 20. Electric vehicles and mean-field Dario Bauso and Toru Namerikawa; 21. Prosumer behaviour: decision making with bounded horizon Mohsen Rajabpour, Arnold Glass, Robert Mulligan and Narayan B. Mandayam; 22. Storage allocation for price volatility management in electricity markets Amin Masoumzadeh, Ehsan Nekouei and Tansu Alpcan.


Perlaza, Samir M
Samir M. Perlaza is a research scientist with the Institut National de Recherche en Informatique, Automatique et Mathématiques Appliquées (INRIA), France, and a visiting research scholar at the Department of Electrical Engineering of Princeton University.

Poor, H Vincent
H. Vincent Poor is the Michael Henry Strater University Professor of Electrical Engineering at Princeton University. He is a member of the US National Academy of Engineering, the US National Academy of Sciences, and a Fellow of the IEEE.

Tajer, Ali
Ali Tajer is Associate Professor of Electrical, Computer, and Systems Engineering at Rensselaer Polytechnic Institute.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.