Buch, Englisch, 287 Seiten, Book w. online files / update, Format (B × H): 160 mm x 241 mm, Gewicht: 623 g
With Python Codes for the Travelling Salesman Problem
Buch, Englisch, 287 Seiten, Book w. online files / update, Format (B × H): 160 mm x 241 mm, Gewicht: 623 g
Reihe: Graduate Texts in Operations Research
ISBN: 978-3-031-13713-6
Verlag: Springer International Publishing
The book approaches the main metaheuristics from a new angle, deconstructing them into a few key concepts presented in separate chapters: construction, improvement, decomposition, randomization and learning methods. Each metaheuristic can then be presented in simplified form as a combination of these concepts. This approach avoids giving the impression that metaheuristics is a non-formal discipline, a kind of cloud sculpture. Moreover, it provides concrete applications of the travelling salesman problem, whichillustrate in just a few lines of code how to design a new heuristic and remove all ambiguities left by a general framework. Two chapters reviewing the basics of combinatorial optimization and complexity theory make the book self-contained. As such, even readers with a very limited background in the field will be able to follow all the content.
Zielgruppe
Upper undergraduate
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Algorithmen & Datenstrukturen
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Optimierung
- Wirtschaftswissenschaften Betriebswirtschaft Unternehmensforschung
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz
Weitere Infos & Material
Part I: Combinatorial Optimization, Complexity Theory and Problem Modelling.- 1. Elements of Graphs and Complexity Theory.- 2. A Short List of Combinatorial Optimization Problems.- 3. Problem Modelling.- Part II: Basic Heuristic Techniques.- 4. Constructive Methods.- 5. Local Search.- 6. Decomposition Methods.- Part III: Popular Metaheuristics.- 7. Randomized Methods.- 8. Construction Learning.- 9. Local Search Learning.- 10. Population Management.- 11. Heuristics Design.- 12. Codes.