Tagantsev / Cross / Fousek | Domains in Ferroic Crystals and Thin Films | E-Book | sack.de
E-Book

E-Book, Englisch, 822 Seiten, eBook

Tagantsev / Cross / Fousek Domains in Ferroic Crystals and Thin Films


1. Auflage 2010
ISBN: 978-1-4419-1417-0
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 822 Seiten, eBook

ISBN: 978-1-4419-1417-0
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark



At present, the marketplace for professionals, researchers, and graduate students in solid-state physics and materials science lacks a book that presents a comprehensive discussion of ferroelectrics and related materials in a form that is suitable for experimentalists and engineers. This book proposes to present a wide coverage of domain-related issues concerning these materials. This coverage includes selected theoretical topics (which are covered in the existing literature) in addition to a plethora of experimental data which occupies over half of the book.The book presents experimental findings and theoretical understanding of ferroic (non-magnetic) domains developed during the past 60 years. It addresses the situation by looking specifically at bulk crystals and thin films, with a particular focus on recently-developed microelectronic applications and methods for observations of domains with techniques such as scanning force microscopy, polarized light microscopy, scanning optical microscopy, electron microscopy, and surface decorating techniques."Domains in Ferroic Crystals and Thin Films" covers a large area of material properties and effects connected with static and dynamic properties of domains, which are extremely relevant to materials referred to as ferroics. In other textbooks on solid state physics, one large group of ferroics is customarily covered: those in which magnetic properties play a dominant role. Numerous books are specifically devoted to magnetic ferroics and cover a wide spectrum of magnetic domain phenomena. In contrast, "Domains in Ferroic Crystals and Thin Films" concentrates on domain-related phenomena in nonmagnetic ferroics. These materials are still inadequately represented in solid state physics textbooks and monographs.
Tagantsev / Cross / Fousek Domains in Ferroic Crystals and Thin Films jetzt bestellen!

Zielgruppe


Professional/practitioner

Weitere Infos & Material


A Preview of Concepts and Phenomena.- Fundamentals of Ferroic Domain Structures.- Ferroic Materials.- Methods for Observation of Domains.- Static Domain Patterns.- Domain Walls at Rest.- Switching Properties: Basic Methods and Characteristics.- Switching Phenomena and Small-Signal Response.- Ferroelectric Thin Films.


"Chapter 5 Static Domain Patterns (p. 207-208)

5.1 Introductory Remarks and Scheme of the Chapter

After discussing in some detail the theoretical aspects of properties of domain states and after describing a number of methods to observe domains, we now wish to deal with some real domain structures in single crystals. Several thousands of papers have been published on observations of domain patterns in different kinds of ferroics,1 offering a large amount of interesting data for materials listed in Chap. 3 and many others. Some of them are just observations as it stands, others were performed with the aim to create situations corresponding to theoretically defined conditions.

When treating properties of domain patterns in real ferroic samples, it is necessary to distinguish features of stable domain structures from those of dynamic domain phenomena. In the present chapter we have primarily in mind static and quasistatic domain patterns which can be observed in the absence of intentionally applied external forces that would tend to change their geometry or sizes. We define static or quasistatic domain patterns arbitrarily as those which do not appreciably change on the time scale of hours.

These are the patterns whichmay correspond to the thermodynamic equilibrium of the sample or which are metastable with long lifetimes because of large energy barriers that would have to be overcome to reach more stable configuration. Available data on domain patterns can be, in some approximation, classified into three categories. First, we can observe domains in a sample as it stands, meaning that its history (sample preparation, thermal record, applied forces) is not known. Second, and perhaps most often, the sample has been treated in a way which has been planned or which at least is known.

Third, the sample quality and the external conditions (e.g., thermal history) are well defined and carefully prepared so that we may expect the resulting domain structure to correspond to minimum energy harmonizing with its intrinsic properties and external conditions; this is often referred to as the ‘‘equilibrium domain pattern.’’ In the present chapter we first discuss, in Sect. 5.2, theoretical aspects of the last mentioned case, paying attention to the simplest example of equilibrium domain pattern in ferroelectric samples containing only domains with antiparallel orientation of PS vectors (‘‘1808 domains’’).

Such patterns have been studied extensively in ferroelectrics, both nonferroelastic and ferroelastic, with the aim to obtain regular patterns corresponding to thermodynamic equilibrium. This research was, in its early stages, inspired by successful treatments of equilibrium domain structures in ferromagnets. The role of the energy of demagnetizing field has its electrical counterpart treated in some detail in the following section. However, in ferroelectrics the situation is different because of the existence of free charge carriers that may contribute in a decisive way to the reduction of depolarization energy. This issue will be addressed in Sect. 5.2 as well."



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.