Taback | Design and Analysis of Experiments and Observational Studies using R | Buch | 978-0-367-45685-6 | sack.de

Buch, Englisch, 292 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 608 g

Reihe: Chapman & Hall/CRC Texts in Statistical Science

Taback

Design and Analysis of Experiments and Observational Studies using R


1. Auflage 2022
ISBN: 978-0-367-45685-6
Verlag: Chapman and Hall/CRC

Buch, Englisch, 292 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 608 g

Reihe: Chapman & Hall/CRC Texts in Statistical Science

ISBN: 978-0-367-45685-6
Verlag: Chapman and Hall/CRC


Introduction to Design and Analysis of Scientific Studies exposes undergraduate and graduate students to the foundations of classical experimental design and observational studies through a modern framework - The Rubin Causal Model. A causal inference framework is important in design, data collection and analysis since it provides a framework for investigators to readily evaluate study limitations and draw appropriate conclusions. R is used to implement designs and analyse the data collected.

Features:

- Classical experimental design with an emphasis on computation using tidyverse packages in R.

- Applications of experimental design to clinical trials, A/B testing, and other modern examples.

- Discussion of the link between classical experimental design and causal inference.

- The role of randomization in experimental design and sampling in the big data era.

- Exercises with solutions.

Instructor slides in RMarkdown, a new R package will be developed to be used with book, and a bookdown version of the book will be freely available. The proposed book will emphasize ethics, communication and decision making as part of design, data analysis, and statistical thinking.

Taback Design and Analysis of Experiments and Observational Studies using R jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1 Introduction 2 Mathematical Statistics: Simulation and Computation 3 Comparing Two Treatments 4 Power and Sample Size 5 Comparing More Than Two Treatments 6 Factorial Designs at Two Levels - 2k Designs 7 Causal Inference


Nathan Taback is Associate Professor of Statistics and Data Science at University of Toronto.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.