Buch, Englisch, Band 120, 320 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 505 g
Buch, Englisch, Band 120, 320 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 505 g
Reihe: Studies in Fuzziness and Soft Computing
ISBN: 978-3-642-53507-9
Verlag: Springer
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Fachgebiete
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Kybernetik, Systemtheorie, Komplexe Systeme
- Naturwissenschaften Chemie Physikalische Chemie Quantenchemie, Theoretische Chemie
- Technische Wissenschaften Technik Allgemein Mathematik für Ingenieure
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Kontinuumsmechanik
Weitere Infos & Material
Application of Evolutionary Algorithms to Combinatorial Library Design.- 1 Introduction.- 2 Overview of a Genetic Algorithm.- 3 De Novo Design.- 4 Combinatorial Synthesis.- 5 Combinatorial Library Design.- 6 Reactant Versus Product Based Library Design.- 7 Reactant-Based Combinatorial Library Design.- 8 Product-Based Combinatorial Library Design.- 9 Library-Based Designs.- 10 Designing Libraries on Multiple Properties.- 11 Conclusion.- References.- Clustering of Large Data Sets in the Life Sciences.- 1 Introduction.- 2 The Grouping Problem.- 3 Unsupervised Algorithms.- 4 Supervised Algorithms.- 5 Evaluation of Clustering Results.- 6 Interpretation of Clustering Results.- 7 Conclusion.- References.- Application of a Genetic Algorithm to the refinement of complex Mössbauer Spectra.- 1 Introduction.- 2 Theoretical.- 3 Experimental.- 4 Results.- 5 Discussion.- 6 Conclusions.- References.- Soft Computing, Molecular Orbital, and Functional Theory in the Design of Safe Chemicals.- 1 Introduction.- 2 Computational Methods.- 3 Neural Network Approach.- 4 Feed-Forward Neural Network Architecture.- 5 Azo Dye Database.- 6 Concluding Remarks.- Acknowledgement.- References.- Fuzzy Logic and Fuzzy Classification Techniques.- 1 Introduction.- 2 Fuzzy Sets.- 3 Case Studies of Fuzzy Classification Techniques.- 4 Conclusion.- References.- Further Reading.- Application of Artificial Neural Networks, Fuzzy Neural Networks, and Genetic Algorithms to Biochemical Engineering.- 1 Introduction.- 2 Application of Fuzzy Reasoning to the Temperature Control of the Sake Mashing Process.- 3 Conclusion.- Acknowledgements.- References.- Genetic Algorithms for the Geometry Optimization of Clusters and Nanoparticles.- 1 Introduction: Clusters and Cluster Modeling.- 2 Overview of Applications of GAs forCluster Geometry Optimization.- 3 The Birmingham Cluster Genetic Algorithm Program.- 4 Applications of the Birmingham Cluster Genetic Algorithm Program.- 5 New Techniques.- 6 Concluding Remarks and Future Directions.- Acknowledgements.- References.- Real-Time Monitoring of Environmental Pollutants in the Workplace Using Neural Networks and FTIR Spectroscopy.- 1 Introduction.- 2 FTIR in the Detection of Pollutants.- 3 The Limitations of FTIR Spectra.- 4 Potential Advantages of Neural Network Analysis of IR Spectra.- 5 Application of the Neural Network to IR Spectral Recognition.- 6 Spectral Interpretation Using the Neural Network.- 7 Factors Influencing Network Performance.- 8 Comparison of Two and Three Layer Networks for Spectral Recognition.- 9 A Network for Analysis of the Spectrum of a Mixture of Two Compounds.- 10 Networks for Spectral Recognition and TLV Determination.- 11 Networks for Quantitative Spectral Analysis.- References.- Genetic Algorithm Evolution of Fuzzy Production Rules for the On-line Control of Phenol-Formaldehyde Resin Plants.- 1 Introduction.- 2 Resin Chemistry and Modelling.- 3 Simulation of Chemical Reactions.- 4 Model Comparison.- 5 Automated Control in Industrial Systems.- 6 Program Development.- 7 Comment.- References.- A Novel Approach to QSPR/QSAR Based on Neural Networks for Structures.- 1 Introduction.- 2 Recursive Neural Networks in QSPR/QSAR.- 3 Representational Issues.- 4 QSPR Analysis of Alkanes.- 5 QSAR Analysis of Benzodiazepines.- 6 Discussion.- 7 Conclusions.- References.- A Appendix.- Hybrid Modeling of Kinetics for Methanol Synthesis.- 1 Introduction.- 2 Neural Networks.- 3 Hybrid Modeling.- 4 Feature Selection.- 5 Modeling of Methanol Synthesis Kinetics.- 6 Conclusions.- A Appendix — Analytical Model of Methanol synthesiskinetics.- Acknowledgements.- References.- About the Editors.- List of Contributors.