Szmydt / Ziemian | The Mellin Transformation and Fuchsian Type Partial Differential Equations | E-Book | www2.sack.de
E-Book

E-Book, Englisch, Band 56, 222 Seiten, eBook

Reihe: Mathematics and its Applications

Szmydt / Ziemian The Mellin Transformation and Fuchsian Type Partial Differential Equations


1992
ISBN: 978-94-011-2424-9
Verlag: Springer Netherland
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 56, 222 Seiten, eBook

Reihe: Mathematics and its Applications

ISBN: 978-94-011-2424-9
Verlag: Springer Netherland
Format: PDF
Kopierschutz: 1 - PDF Watermark



Szmydt / Ziemian The Mellin Transformation and Fuchsian Type Partial Differential Equations jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


I. Introduction.- §1. Terminology and notation.- §2. Elementary facts on complex topological vector spaces.- 1. Multinormed complex vector spaces and their duals.- 2. Inductive and projective limits.- 3. Subspaces. The Hahn-Banach theorem.- Exercise.- §3. A review of basic facts in the theory of distributions.- 1. Spaces DK and (DK)1.- 2. Spaces D(A) and D'(A).- 3. Spaces S and S1.- 4. Spaces E and E1.- 5. Substitution in distributions. Homogeneous distributions.- 6. Classical order of a distribution and extendibility theorems for distributions.- 7. Convolution of distributions.- 8. Tensor product of distributions.- Exercises.- II. Mellin distributions and the Mellin transformation.- §4. The Fourier and the Fourier-Mellin transformations.- 1. The Fourier transformation in S1.- 2. The Fourier-Mellin transformation in the space of Mellin distributions with support in % MathType!MTEF!2!1!+-
% feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb
% qegWuDJLgzHbIrHHhaiuqacqWFsbGufaqabeGabaaabaqcLbqacGao
% 4pOBaaGcbaqcLbqacWaGaI7-q8VHRaWkaaaaaa!450D!$$
R\begin{array}{*{20}{c}}
n \\
+
\end{array} $$.- Exercises.- §5. The spaces of Mellin distributions with support in a polyinterval.- 1. Spaces Ma, ((0, t]) and M1a ((0, t]).- 2. Spaces M(?) ((0, t]) and M1(?) ((0, t]).- Exercises.- §6. Operations of multiplication and differentiation in the space of Mellin distributions.- 1. Multiplication and differentiation in Ma, M(?) and their duals.- 2. Mellin multipliers.- Exercises.- §7. The Mellin transformation in the space of Mellin distributions.- 1. The Mellin transformation in the space of Mellin distributions and its relations with the Fourier-Laplace transformation.- 2. Examples of Mellin transforms of some functions.- 3. Mellin transforms of certain cut-off functions.- 3.1. One-dimensional smooth cut-off functions.- 3.2. n-Dimensional smooth cut-off functions with a parameter.- Exercises.- §8. The structure of Mellin distributions.- 1. Characterizations of Mellin distributions.- 2. Substitution in a Mellin distribution.- 3. Mellin order of a Mellin distribution.- Exercises.- §9. Paley-Wiener type theorems for the Mellin transformation.- Exercises.- §10. Mellin transforms of cut-off functions (continued).- 1. Conical cut-off functions.- 2. The K-inequalities.- 3. The “tangent cones” ?K and related cut-off functions.- 4. Further investigation of the Mellin transform of a conical cut-off function.- Exercises.- §11. Important subspaces of Mellin distributions.- 1. Subspaces % MathType!MTEF!2!1!+-
% feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaacI
% cacaWG4bWaaSaaaeaacaWGKbaabaGaamizaiaadIhaaaGaaiykaiaa
% dwhacqGH9aqpcaWGMbaaaa!3EE9!$$
P(x\frac{d}{{dx}})u = f $$.- 2. Subspaces SPr(s,s1 ) of Mellin distributions.- 3. Spaces M(? ?) and Zd(? ?) of distributions with continuous radial asymptotics.- Exercises.- §12. The modified Cauchy transformation.- 1. Modified Cauchy and Hilbert transformations in dimension 1.- 2. The case with parameters.- Exercises.- III. Fuchsian type singular operators.- §13. Fuchsian type ordinary differential operators.- 1. Asymptotic expansions.- 2. The equation % MathType!MTEF!2!1!+-
% feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamytamXvP5
% wqonvsaeHbmv3yPrwyGmvyUnhaiuGajugOaiadaciaaW3--Leajjad
% acigaa3--nhaZPWaiaiG47p6-VbaaSqaiaiG47p6-ladaciC-d9--H
% caOeXafv3ySLgzGmvETj2BSbacgmGamaiGW9p0-7xYdCNamaiGW9p0
% --xkaKcabKaGaIV-O-paaaa!6A3A!$$
MI{s_{(\omega )}} $$ and definition of ordinary Fuchsian type differential operators.- 3. Case of smooth coefficients.- 4. Case of analytic coefficients.- 5. Special functions as generalized analytic functions.- Exercises.- §14. Elliptic Fuchsian type partial differential equations in spaces % MathType!MTEF!2!1!+-
% feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaacI
% cacaWG4bWaaSaaaeaacaWGKbaabaGaamizaiaadIhaaaGaaiykaiaa
% dwhacqGH9aqpcaWGMbaaaa!3EE9!$$
P(x\frac{d}{{dx}})u = f $$.- 1. Existence and regularity of solutions on tangent cones ?K.- 2. Case of a proper cone.- Exercise.- §15. Fuchsian type partial differential equations in spaces with continuous radial asymptotics.- 1. The radial characteristic set Charg % MathType!MTEF!2!1!+-
% feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGamaiJeg7aHj
% acacie-d9-cQcacGaGasW-maWGqbaaaa!4027!$$
alpha *P $$.- 2. Regularity of solutions in spaces M(? ?) and Zd(? ?).- Appendix. Generalized smooth functions and theory of resurgent functions of Jean Ecalle.- 1. Introduction.- 2. Generalized Taylor expansions.- 3. Algebra of resurgent functions of Jean Ecalle.- 4. Applications.- List of Symbols.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.