Szegö | Gabor Szegö: Collected Papers | Buch | 978-1-4612-5787-5 | sack.de

Buch, Englisch, 880 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 1641 g

Reihe: Contemporary Mathematicians

Szegö

Gabor Szegö: Collected Papers

1945-1972
Softcover Nachdruck of the original 1. Auflage 1982
ISBN: 978-1-4612-5787-5
Verlag: Birkhäuser Boston

1945-1972

Buch, Englisch, 880 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 1641 g

Reihe: Contemporary Mathematicians

ISBN: 978-1-4612-5787-5
Verlag: Birkhäuser Boston


1. 1. Definition of L-forms. In the years 1907-1911 O. Toeplitz [21, 22, 23, 24]* studied a class of quadratic forms whose matrix is of the follO\\"ing type: (Ll) C-2 C_I Co C-n-I Cn-I The elements Cn are given complex constants. Toeplitz designated these forms as L-forms and investigated in detail their relation to the analytic function defined in a neighborhood of the unit circle by the Laurent series 2; C z", n = n - 00,., 00; this series is assumed to be convergent in a certain circular ring rl < I z I < r2, rl < 1 < r2. It is obvious that these matrices are connected with the infinite cyclic group, just as the finite cyclic matrix CO CI C2 C Co CI n r (1. 2) Cn-I C Co n L. c, c, Co is associated with the finite cyclic group. The main result of Toeplitz is that the spectrum of the L-form is identical with the complex values the Laurent series assumes on the unit circle I z I = 1. 1. 2. Hermitian forms. The case C = en is of particular importance; the n matrix (1. 1) is in this case a Hermitian one and the associated Laurent series i8 represents a real function f(8) on the unit circle z = e, -'II" ~ 8 < '11".

Szegö Gabor Szegö: Collected Papers jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


— Volume 3.- (1945–1) Inequalities for the Capacity of a Condenser (with G. Pólya).- (1945–2) On the Capacity of a Condenser.- (1948–1) On an Inequality of P. Turán Concerning Legendre Polynomials.- (1949–1) The Virtual Mass of Nearly Spherical Solids.- (1949–2) Virtual Mass and Polarization (with M. Schiffer).- (1950–1)Über eine Verallgemeinerung des Dirichletschen Integrals.- (1950–2) On Membranes and Plates.- (1950–3) Extremum Problems for Non-Negative Sine Polynomials (with W. W. Rogosinski).- (1950–4) Conformal Mapping of the Interior of an Ellipse onto a Circle.- (1950–5) On the Relative Extrema of Legendre Polynomials.- (1950–6) On Certain Special Sets of Orthogonal Polynomials.- (1951–1) Special Conformal Mappings (with L. Fejér).- (1951–2) Principal Frequency, Torsional Rigidity and Electrostatic Capacity.- (1952–1) On Certain Set Functions Defined by Extremum Properties in the Theory of Functions and in Mathematical Physics.- (1952–2) On Certain Hermitian Forms Associated with the Fourier Series of a Positive Function.- (1952–3) Conformal Mapping Related to Torsional Rigidity, Principal Frequency, and Electrostatic Capacity.- (1952–4) Recent Contributions of the Hungarian School to Conformal Mapping.- (1953–1) A Note on the Reciprocal of a Fourier Series (with A. Edrei).- (1953–2) On the Vibrations of a Clamped Plate.- (1953–3) Remark on the Preceding Paper of Charles Loewner.- (1953–4) On the Eigen-values of Certain Hermitian Forms (with M. Kac and W. L. Murdock).- (1954–1) Inequalities for Certain Eigenvalues of a Membrane of Given Area.- (1954–2) On Certain Mean Values of Polynomials (with A. Zygmund).- (1954–3) On the Singularities of Zonal Harmonic Expansions.- (1954–4) On a Theorem of C.Carathéodory.- (1954–5) Otto Szász.- (1954–6) Review of Higher Transcendental Functions, Vols. 1 and 2.- (1955–1) On Algebraic Equations with Integral Coefficients Whose Roots Belong to a Given Point Set (with M. Fekete).- (1955–2) On a Certain Kind of Symmetrization and Its Applications.- (1956–1) Relations between Different Capacity Concepts.- (1958–1) Note to My Paper “On Membranes and Plates”.- (1959–1) Recent Advances and Open Questions on the Asymptotic Expansions of Orthogonal Polynomials.- (1960–1) On Certain Differential-Integral Equations (with S. Karlin).- (1960–2) Concerning the Fourier Coefficients of a Nonnegative Function.- (1960–3) A Problem in Prediction Theory (with Henry Helson).- (1960–4) Leopold Fejér: In Memoriam 1880–1959.- (1960–5) Emlékezés Fejér Lipótra.- (1960–6) An Extremum Problem for Polynomials (with I. J. Schoenberg).- (1960–7) On the Gradient of Solid Harmonic Polynomials.- (1960–8) On Certain Determinants Whose Elements are Orthogonal Polynomials (with S. Karlin).- (1961–1) On the Monotone Convergence of Certain Riemann Sums (with P. Turán).- (1962–1) On Positive Harmonic Polynomials.- (1962–2) An Inequality for Jacobi Polynomials.- (1963–1) On Bi-Orthogonal Systems of Trigonometric Polynomials.- (1963–2) On the Positivity of Certain Sums of Ultraspherical Polynomials, by Ervin Feldheim with a note by G. Szegö.- (1964–1) On a Problem of the Best Approximation.- (1964–2) On Some Problems of Approximations.- (1968–1) An Outline of the History of Orthogonal Polynomials.- (1972–1) The Contributions of L. Fejér to the Constructive Function Theory.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.