Buch, Englisch, Band 408, 183 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 1080 g
Buch, Englisch, Band 408, 183 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 1080 g
Reihe: Mathematics and Its Applications
ISBN: 978-0-7923-4533-6
Verlag: Springer Netherlands
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Ökonometrie
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsmathematik und -statistik
- Mathematik | Informatik Mathematik Operations Research Spieltheorie
- Mathematik | Informatik Mathematik Mathematische Analysis Variationsrechnung
- Mathematik | Informatik Mathematik Stochastik Stochastische Prozesse
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Mathematik | Informatik Mathematik Mathematische Analysis Funktionalanalysis
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Mathematik | Informatik Mathematik Stochastik Elementare Stochastik
Weitere Infos & Material
Definition and Classification of Semi-Markov Random Evolutions.- ESS in Semi-Markov Random Media.- Martingale Methods in RE.- Organization of the Handbook.- Structure of the Handbook.- Historical and Bibliographical Remarks to the Introduction.- 1 Multiplicative Operator Functionals.- 1.1 Semigroups of Operators.- 1.2 Additive and Multiplicative Functionals.- 1.3 Multiplicative Operator Functionals.- 1.4 Representations of MOF.- 1.5 Dual MOF.- 1.6 MOF Underlying Superprocesses.- 1.7 Stochastic Semigroups.- 1.8 Construction of a Markov Process by Multiplicative Functionals.- 1.9 Additive Operator Functionals.- 1.10 MOF on a Finite Markov Chain.- 2 Random Evolutions.- 2.1 Definition and Classification of Random Evolutions.- 2.2 Models of Random Evolutions.- 2.3 Evolutionary Equations.- 2.4 Martingale Methods in Random Evolutions.- 2.5 The Analogue of Dynkin’s Formula for MOF and Random Evolutions.- 2.6 Boundary Value Problems for MOF and RE.- 2.7 Stability of Random Evolutions.- 2.8 Control of Random Evolution Historical and Bibliographical Remarks to Chapter 2.- 3 Limit Theorems for Random Evolutions.- 3.1 Limit theorems for models of random evolutions.- 3.2 Weak Convergence of Random Evolutions.- 3.3 Averaging of SMRE in a Series Scheme.- 3.4 Diffusion Approximation of SMRE in a Series Scheme.- 3.5 Averaging of SMRE in Reducible Phase Space. Merged RE.- 3.6 Diffusion Approximation of SMRE in a Reducible Phase Space.- 3.7 Normal deviations of SMRE.- 3.8 Rates of Convergence in the Limit Theorems for SMRE.- 3.9 Ergodic Theorem for MOF on a Markov Chain.- 4 Applications of Evolutionary Stochastic Systems.- 4.1 Random Evolutions as an Evolutionary Stochastic Systems in Random Media.- 4.2 Averaging and Merging of Evolutionary Stochastic Systems.- 4.3 DiffusionApproximation of Evolutionary Stochastic Systems.- 4.4 Rates of Convergence in the Limit Theorems for Stochastic Systems.- 4.5 Normal Deviations of Stochastic Systems.- 4.6 Stability of Evolutionary Stochastic Systems.- 4.7 Control of Evolutionary Stochastic Systems.- 5 New Trends in Random Evolutions.- 5.1 The Existence of the Wiener Measure and Related Stochastic Equations.- 5.2 Stochastic Integrals over Martingale Measures.- 5.3 Stochastic Integral Equations over Martingale Measures.- 5.4 Martingale Problems Connected with Stochastic Equations over Martingale Measures.- 5.5 Stochastic Integral Equation for Limiting Random Evolutions.- 5.6 Evolutionary Operator Equations Driven by the Wiener Martingale Measure.- 5.7 Random Evolutions in Financial Mathematics: Hedging of Options.