Buch, Englisch, 198 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 494 g
Buch, Englisch, 198 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 494 g
Reihe: Probability and Its Applications
ISBN: 978-3-031-33428-3
Verlag: Springer Nature Switzerland
This book extends the theory and applications of random evolutions to semi-Markov random media in discrete time, essentially focusing on semi-Markov chains as switching or driving processes. After giving the definitions of discrete-time semi-Markov chains and random evolutions, it presents the asymptotic theory in a functional setting, including weak convergence results in the series scheme, and their extensions in some additional directions, including reduced random media, controlled processes, and optimal stopping. Finally, applications of discrete-time semi-Markov random evolutions in epidemiology and financial mathematics are discussed. This book will be of interest to researchers and graduate students in applied mathematics and statistics, and other disciplines, including engineering, epidemiology, finance and economics, who are concerned with stochastic models of systems.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Stochastik Stochastische Prozesse
- Mathematik | Informatik Mathematik Geometrie Dynamische Systeme
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Statik, Dynamik, Kinetik, Kinematik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
Weitere Infos & Material
- 1. Discrete-Time Stochastic Calculus in Banach Space. - 2. Discrete-Time Semi-Markov Chains. - 3. Discrete-Time Semi-Markov Random Evolutions. - 4. Weak Convergence of DTSMRE in Series Scheme. - 5. DTSMRE in Reduced Random Media. - 6. Controlled Discrete-Time Semi-Markov Random Evolutions. - 7. Epidemic Models in Random Media. - 8. Optimal Stopping of Geometric Markov Renewal Chains and Pricing.