E-Book, Englisch, Band 934, 499 Seiten, eBook
Swider / Swider / Kciuk Mechatronics 2017 - Ideas for Industrial Applications
1. Auflage 2019
ISBN: 978-3-030-15857-6
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 934, 499 Seiten, eBook
Reihe: Advances in Intelligent Systems and Computing
ISBN: 978-3-030-15857-6
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Foreword;6
2;Contents;8
3;About the Editors;13
4;Modelling Industrial Robot Fanuc ARC Mate 100iB in LabVIEW;15
4.1;Abstract;15
4.2;1 Introduction;15
4.3;2 Building the Model in LabVIEW and Make a Program;15
4.4;3 Tests;21
4.5;4 Conclusions;23
4.6;References;23
5;Recognition of Text Commands and Control of the Mobile Robot Starter Kit 2.0;24
5.1;Abstract;24
5.2;1 Introduction;24
5.3;2 Text Recognition;25
5.3.1;2.1 Picture from the Kinect Sensor;26
5.3.2;2.2 Preprocessing the Image;27
5.3.3;2.3 Determine the Greatest Contour;28
5.3.4;2.4 Defining Text Lines;29
5.3.5;2.5 Specifying the Contour Coordinates;29
5.3.6;2.6 Point Characteristic Method;30
5.3.7;2.7 Microsoft Kinect Integration and Starter Kit 2.0;31
5.4;3 Summary and Conclusions;32
5.5;References;32
6;System for Positioning of the Roadheader in Roadways of Hard Coal Mines;34
6.1;Abstract;34
6.2;1 Introduction;34
6.3;2 Design and Principle of Operation;35
6.4;3 Measuring Technology;36
6.5;4 Position and Orientation of the Roadheader;37
6.6;5 Testing the Physical Model of the Positioning System;41
6.7;6 Conclusions;43
6.8;References;43
7;Biomechatronic Simulator for Fencing Training Using Virtual Reality Technology;44
7.1;Abstract;44
7.2;1 Introduction;44
7.3;2 Aim;46
7.4;3 Materials and Methods;46
7.5;4 Discussion;49
7.6;5 Conclusions;49
7.7;References;50
8;Application of Industrial Automatic Systems for Operating Parameters Identification of Mining Machines;52
8.1;Abstract;52
8.2;1 Introduction;52
8.3;2 Characteristics of the Examined System;55
8.4;3 Research Methodology;57
8.5;4 Test Results;60
8.6;5 Conclusions;63
8.7;Acknowledgments;64
8.8;References;65
9;Collection of Essential Methods Among the Beams Analysis as an Introduction into the Dynamic Reverse Task Solution of Bending Vibration within Mechatronic System;66
9.1;Abstract;66
9.2;1 Introduction;66
9.3;2 The Algorithm of Exact Method Obtaining Within the Solution of Transverse Vibrating Beam;67
9.4;3 The Algorithm of Exact Method Obtaining the Dynamical Flexibility of Transverse Vibrating Beam;69
9.5;4 The Algorithms of the Approximate Methods Obtained Within the Dynamical Flexibilities of Transverse Vibrating Beam;69
9.6;5 Graphs Different Category’s Concerning Models of Vibrating Beams;71
9.7;6 Conclusion;73
9.8;Acknowledgement;73
9.9;References;73
10;Tunable Model of a Servo Hydraulic Tester for Shock Absorbers Vibrational Evaluation;75
10.1;Abstract;75
10.2;1 Introduction;75
10.3;2 Updating Model Parameters;76
10.4;3 First-Principle Data-Driven;77
10.5;4 Tuning of the Model;80
10.6;5 Summary;83
10.7;References;83
11;Modelling and System Identification of a Monotube Shock Absorber;84
11.1;Abstract;84
11.2;1 Introduction;84
11.3;2 Nonlinear Models Applicable to Reproduce Shock Absorber Dynamics;86
11.3.1;2.1 Low-Content of a Priori Knowledge Models;86
11.3.2;2.2 High-Content of a Priori Knowledge Models;87
11.4;3 Shock Absorber Model and Experimental Results;88
11.4.1;3.1 Shock Absorber Model;88
11.4.2;3.2 Low-Content of a Priori Knowledge Model Validation Results;89
11.4.3;3.3 High-Content of a Priori Knowledge Model Validation Results;91
11.5;4 Summary and Conclusions;93
11.6;References;93
12;Particle Image Velocimetry Technique Applied to Flow Evaluation Through a Shock Absorber Intake Valve;95
12.1;Abstract;95
12.2;1 Introduction;95
12.3;2 Particle Image Velocimetry;96
12.4;3 Experimental Setup;99
12.5;4 Measurement Results;102
12.6;5 Summary;104
12.7;References;104
13;Concept, Physical Design and Simulator of IRYS Social Robot Head;105
13.1;Abstract;105
13.2;1 Introduction;105
13.3;2 System Concept;107
13.4;3 Physical Head with Upper Trunk;108
13.5;4 Simulator;110
13.6;5 High-Level Control System and Unified Control Interface;111
13.7;6 Expressing Emotions of a Robot Head;111
13.8;7 Conclusions and Future Works;113
13.9;Acknowledgements;113
13.10;References;113
14;Cognitive Maintenance and Polymorphic Production as the Leading Industry 4.0 Paradigms;115
14.1;Abstract;115
14.2;1 Introduction to Industry 4.0;116
14.3;2 Maintenance in Today’s Industry;117
14.4;3 Cognitive Maintenance;117
14.5;4 Knowledge-Integrated Manufacturing;120
14.6;5 Polymorphic Production;121
14.7;6 Summary;122
14.8;Acknowledgement;123
14.9;References;123
15;Concept of Coupling the Rehabilitation Treadmill with Foot Pressure Sensors;125
15.1;Abstract;125
15.2;1 Introduction;125
15.3;2 The Set Up of the Test Bench;126
15.4;3 Integration of Components;127
15.5;4 Algorithm of the System Operation;128
15.6;5 Test of an Operation System Accuracy;130
15.7;6 Conclusions;131
15.8;References;132
16;Forecasting of Methane Hazard State in the Exploitation Wall Using Neural-Fuzzy System;133
16.1;Abstract;133
16.2;1 Introduction;133
16.3;2 Characteristics of Monitoring, Assessment and Methane Hazard Prediction System;135
16.3.1;2.1 Measuring Devices of Methane Hazard Monitoring System;136
16.3.2;2.2 Concept of Methane Hazard Assessment and Prediction of Methane Hazard;137
16.4;3 Characteristics of Neural-Fuzzy System for Prediction of Methane Hazard in Region of Longwall;139
16.4.1;3.1 Identification of the Research Area;139
16.4.2;3.2 Characteristics of the Developed System;139
16.5;4 Test Results;143
16.6;5 Conclusions;145
16.7;References;146
17;Modular Approach to the Planning of the Robot’s Tasks in the Context of Holons and Graph-Based Methods;148
17.1;Abstract;148
17.2;1 Introduction;148
17.3;2 The Comparison of Classic and Advanced Methods of Planning of the Robotic Tasks;150
17.3.1;2.1 The Classic Form of Robots’ Programming;150
17.3.2;2.2 Programming by Example/Demonstration;151
17.3.3;2.3 Task-Level Programming;152
17.4;3 Holons;153
17.4.1;3.1 Introduction;153
17.4.2;3.2 Relationship Between Holons and the Source Code of a Program;153
17.5;4 The Petri Nets;154
17.5.1;4.1 Introduction;154
17.5.2;4.2 The Petri Nets as a Model of a Program of the Robot;154
17.6;5 The Example of Using the Modular Approach to the Robot’s Task Planning by Means of Holons and Petri Nets;155
17.7;6 Conclusions;156
17.8;References;157
18;Detection and Recording of Acoustic Emission in Discrete IGBT Transistors;158
18.1;Abstract;158
18.2;1 Introduction;158
18.3;2 Measuring Method;159
18.4;3 Operation;160
18.5;4 The Analysis of Obtained Results;161
18.6;5 Conclusion;163
18.7;References;164
19;Zero-Sum Differential Game in Wheeled Mobile Robot Control;165
19.1;Abstract;165
19.2;1 Introduction;165
19.3;2 {\varvec H}_{\infty } Optimal Control. Zero-Sum Differential Game;166
19.3.1;2.1 {\varvec L}_{2} - Gain. {\varvec H}_{\infty } Control Problem;166
19.3.2;2.2 Zero-Sum Differential Game;167
19.4;3 Approximation Solution;168
19.4.1;3.1 Approximation a Zero-Sum Differential Game;168
19.5;4 Wheeled Mobile Robot;169
19.5.1;4.1 WMR Kinematics;169
19.5.2;4.2 WMR Dynamics;170
19.6;5 Numerical Simulation;171
19.6.1;5.1 Desired Trajectory;171
19.6.2;5.2 Simulation of Differential Game;172
19.6.3;5.3 Simulation {\varvec H}_{\infty } Control Problem;173
19.7;6 Summary;174
19.8;References;174
20;Numerical Analysis of the Dynamic Impact of a Gun Barrel During Firing;176
20.1;Abstract;176
20.2;1 Introduction;176
20.3;2 Analytical Approach to the Issue;177
20.4;3 Subject and Purpose of Research;178
20.5;4 Experimental Studies;179
20.6;5 Numerical Analysis FEM;180
20.6.1;5.1 Assumptions for Construction of Models;180
20.6.2;5.2 Simulation and Results;182
20.7;6 Comparison of Results;186
20.8;7 Conclusions;186
20.9;Acknowledgements;187
20.10;References;187
21;Concept of Sensor for Mining Machines Powered by Pressure Changes;189
21.1;Abstract;189
21.2;1 Introduction;189
21.3;2 Concept;190
21.4;3 Demand of Energy for Wireless Sensor;191
21.5;4 Tests of Piezoelectric Generator;192
21.5.1;4.1 Model of Piezoelectric Pile;193
21.5.2;4.2 Energy Generated by the Pile of Piezoelectric Transducers;193
21.5.3;4.3 Test Results;194
21.6;5 Summary;196
21.7;References;196
22;Model of Dynamics of the Three Wheeled Mobile Platform;198
22.1;Abstract;198
22.2;1 Introduction;198
22.3;2 Dynamics of the Platform;199
22.3.1;2.1 Design of the Prototype of the Platform;199
22.3.2;2.2 Model of Dynamics;200
22.3.3;2.3 Description of the Dynamics of the Three-Wheeled Mobile Platform;202
22.4;3 Conclusions;204
22.5;References;205
23;Control of Bucket Conveyor’s Output;206
23.1;Abstract;206
23.2;1 Introduction;206
23.3;2 Characteristics of Bucket Conveyor Operation in the Jig’s Mineral Processing Node;207
23.4;3 Identification of Model;208
23.5;4 System for Automatic Control of Bucket Conveyor Speed;210
23.6;5 Verification Tests of Impact of Automatic Control on Energy Consumption of the Conveyor’s Motor;211
23.7;6 Summary;212
23.8;References;213
24;Magnetorheological Suspension Based on Silicone Oil;215
24.1;Abstract;215
24.2;1 Introduction;215
24.3;2 Experimental;218
24.4;3 Results and Discussion;220
24.5;4 Conclusions;232
24.6;Acknowledgment;232
24.7;References;233
25;Experimental Verification of the Filtration Phenomena in Hydraulic Systems;234
25.1;Abstract;234
25.2;1 Introduction;234
25.3;2 Model of the Filtration Phenomena for Hydraulic Systems;235
25.4;3 Experimental Tests of Cleanliness of the Hydraulic Fluid During the Flushing of the Hydraulic Power Packs;238
25.5;4 Estimation the Total Flux Value ? of Solid Particulates;243
25.6;5 Summary;244
25.7;References;244
26;Role of Didactical Stations in Education Process of Industrial Automatics Technical Staff;245
26.1;Abstract;245
26.2;1 Introduction;245
26.3;2 Desktop Didactical Stations;245
26.3.1;2.1 Desktop Didactical Stations Consisting of a PLC Controller and HMI Panel Are Designed to Allow Learning the Following Skills;246
26.3.2;2.2 Desktop Didactical Station Consisting of a PLC Controller and UHF Modem (Fig. 2) Can Be Used to Carry out Following Tasks;248
26.3.3;2.3 Desktop Didactical Station Consisting of an Industrial Computer;248
26.3.4;2.4 Desktop Didactical Station Equipped with Frequency Inverter;249
26.4;3 Object Didactical Stations and Industrial Network Didactical Stations;250
26.4.1;3.1 Object Didactical Station - Processing Line Simulation;250
26.4.2;3.2 Plotter Didactical Station;251
26.4.3;3.3 Serial I/O – Industrial Network Station;251
26.5;4 Conclusions;253
26.6;References;253
27;Image-Based Method for Knee Ligament Injuries Detection;254
27.1;Abstract;254
27.2;1 Introduction;254
27.3;2 Methodology;256
27.3.1;2.1 Developed Algorithm;256
27.4;3 Results;259
27.5;4 Conclusions;259
27.6;Acknowledgements;260
27.7;References;260
28;Application of Surface Electromyographic Signals for Electric Rotor Control;262
28.1;Abstract;262
28.2;1 Introduction;262
28.3;2 Construction of Stationary Mechatronic Rotor;263
28.4;3 Simulation of Operation of Stationary Mechatronic Rotor;267
28.5;4 Conclusions;270
28.6;References;270
29;Voltage Source Inverter Synchronization with the Use of FFT Algorithm;272
29.1;Abstract;272
29.2;1 Introduction;272
29.3;2 Structure of Investigated System;273
29.4;3 Basics of Radix-2 DIT;274
29.5;4 Relationship Between FFT Data Vector Length and Frequency Resolution;276
29.6;5 Investigated Control System Properties and Computer Simulations Results;277
29.7;6 Real-Time Experimental Test Bench and Chosen Results;279
29.8;7 Conclusions;281
29.9;References;282
30;Experimental Research Assessing Threat of EOD Technicians from Explosive Blast;283
30.1;Abstract;283
30.2;1 Introduction;283
30.3;2 Methodology;284
30.4;3 Results;287
30.5;4 Conclusions;289
30.6;References;290
31;Theoretical Analysis of Piezoelectric Transformers in Different Configurations;291
31.1;Abstract;291
31.2;1 Introduction;291
31.3;2 Fundamentals;292
31.3.1;2.1 Piezoelectric Materials;292
31.3.2;2.2 Lagrangian Formalism for Piezoelectric Devices;292
31.4;3 Equations of Motion;293
31.4.1;3.1 PT Configurations;293
31.4.2;3.2 Assumptions;294
31.4.3;3.3 Derivation of the Equations of Motion for the Two-Segments E31–E33 Type PT (Classical Rosen–Type PT [1, 2]);294
31.4.4;3.4 Derivation of the Equations of Motion for the Two-Segments PT of the e33–e33 Type;296
31.4.5;3.5 Derivation of the Equations of Motion for the Two-Segments e31–e31 Type PT;297
31.4.6;3.6 Derivation of the Equations of Motion for the Three-Segments E31–E31 Type PT with the Driving Segment in the Middle (“Middle–Driving” – “Md”);297
31.4.7;3.7 Derivation of the Equations of Motion for the Three-Segments E31–E31 Type PT with the Generating Segment in the Middle (“Middle–Generating” – “Mg”);298
31.5;4 Results;298
31.5.1;4.1 Formulas;298
31.5.2;4.2 Input Data;299
31.5.3;4.3 Calculation Results;299
31.6;5 Discussion;301
31.7;6 Conclusions;302
31.8;References;302
32;Fracture Surface Analysis of the EN AW-2017A-T4 Specimens with Rectangular Section;304
32.1;Abstract;304
32.2;1 Introduction;304
32.3;2 Materials and Methods;305
32.3.1;2.1 Studied Material;305
32.3.2;2.2 Fatigue Experiments;306
32.3.3;2.3 Fracture Form and Roughness Measurements;307
32.4;3 Results and Discussion;307
32.4.1;3.1 Fracture Surface Geometry;307
32.4.2;3.2 Propagation and Rupture Roughness Analysis;309
32.5;4 Conclusions;311
32.6;References;311
33;Autonomous Robot Control System for Automation of Manipulations;312
33.1;Abstract;312
33.2;1 Purpose of Research;312
33.3;2 Research Concept and Plan;313
33.3.1;2.1 Research Method;314
33.4;3 Design Assumptions of Projected System;314
33.5;4 Technical Realization;317
33.5.1;4.1 Computer Operation of a Robot;317
33.5.2;4.2 Workspace Monitoring;318
33.5.3;4.3 Artificial Intelligence Application;319
33.6;5 Anticipated Research Result;320
33.7;References;321
34;Advantages of Using Industrial Sensor Interfaces at the Machine Design Stage;322
34.1;Abstract;322
34.2;1 Introduction;322
34.3;2 Classic Approach to the Topic;323
34.4;3 Purpose of the Technology;324
34.5;4 Summary;327
34.6;References;327
35;Bisection Method for Measuring Integral Nonlinearity of Precision Thermometry Bridges;328
35.1;Abstract;328
35.2;1 Introduction;329
35.3;2 Method of Measurement by AC Bridge;329
35.4;3 Reasons for Nonlinearity of AC Bridges;331
35.5;4 Method of Controlling the Bridge Integral Nonlinearity;332
35.6;5 Discussion of Method Used in Practice;333
35.7;6 Bisection Method;335
35.7.1;6.1 Methodology for Measuring Nonlinearity;335
35.7.2;6.2 Selecting the Number of Control Points;337
35.7.3;6.3 Device for Controlling Nonlinearity;337
35.7.4;6.4 Experimental Results;338
35.8;References;338
36;Applications of Composite Piezoelectric Transducers in Innovative Mechatronic Systems;340
36.1;Abstract;340
36.2;1 Introduction;340
36.2.1;1.1 Innovative Traffic Surveillance Systems with Piezoelectric Transducers;341
36.3;2 Measurements of the Dynamic Response of the Road Barrier;343
36.4;3 Conclusions;347
36.5;References;348
37;Sensor-Less Bilateral Teleoperation System Based on Non Linear Inverse Modelling with Signal Prediction;351
37.1;Abstract;351
37.2;1 Introduction;351
37.3;2 Problem Statement;352
37.4;3 Inverse Model with Prediction of Input and Output Signals;354
37.5;4 Experiment;358
37.6;5 Conclusions;359
37.7;Acknowledgments;360
37.8;References;360
38;Time Constant and Model-Free Signal Prediction in Communication Channel of Teleoperation System;362
38.1;Abstract;362
38.2;1 Introduction;362
38.3;2 Problem Statement;364
38.4;3 The Prediction Block;366
38.5;4 Experiment;367
38.6;5 Conclusions;371
38.7;Acknowledgment;371
38.8;References;371
39;Analysis of Selected Factors’ Influence on the Specific Range of Modern Jet Transport Aircraft as a Complex Mechatronic System;374
39.1;Abstract;374
39.2;1 Introduction;374
39.3;2 Data Sources;375
39.4;3 Flight Data Characteristics;376
39.5;4 Stable Segment Quality;380
39.6;5 Tail Number Specific Cruise Stability;381
39.7;6 Tail Number Specific Cruise Stability;382
39.8;7 Results;384
39.8.1;7.1 Variants and Gross Mass Effect on Cruise Performance;384
39.8.2;7.2 Air Temperature;385
39.8.3;7.3 Optimal Altitude;386
39.8.4;7.4 Mach Number;387
39.9;8 Conclusion;389
39.10;References;390
40;Investigation of Newly Developed Microwave Heated Moisture Analyzer Measurements of Ketchup and Milk Samples in Climatic Chamber;391
40.1;Abstract;391
40.2;1 Introduction;391
40.3;2 Materials and Methods;394
40.4;3 Results;395
40.5;4 Discussion;396
40.6;References;397
41;Computer Aided Planning of Adept Six-300 Robot Trajectories;398
41.1;Abstract;398
41.2;1 Introduction;398
41.3;2 The Characteristics of the Program Tobject;400
41.4;3 The Determination of the Geometric Parameters;401
41.4.1;3.1 Parameters of the Station Frame;401
41.4.2;3.2 Parameters of the Gripper;404
41.5;4 The Calculations of an Exemplary Desired Trajectory and Its Realization;404
41.5.1;4.1 The Position and Orientation of the Manipulation Object;404
41.5.2;4.2 The Exemplary Desired Trajectory of the Manipulator;405
41.5.3;4.3 The Realization of the Desired Trajectory of the Manipulation Object;406
41.6;5 Summary;407
41.7;References;407
42;Control of Selected Operational Parameters of the Scraper Conveyor to Improve Its Working Conditions;409
42.1;Abstract;409
42.2;1 Introduction;409
42.3;2 Computational Model of AFC;410
42.4;3 Algorithm for Controlling the AFC Operation;412
42.5;4 Results of Analysis of the Algorithm Use;414
42.6;5 Conclusions;418
42.7;Acknowledgments;418
42.8;References;418
43;Power Quality in the “Shore to Ship” System – The Improvement of the Unbalanced Voltage Factor;420
43.1;Abstract;420
43.2;1 Introduction;420
43.3;2 The Quality of Electricity in STS System; Voltage Unbalance;422
43.4;3 Improving the Rate of Voltage Unbalance in the STS System Using Shunt Active Filter;423
43.5;4 The Simulation Research on the Shunt Active Filter in STS System;427
43.6;5 Conclusions;429
43.7;References;430
44;Mathematical Modelling and Selecting the Parameters of Magnetic Circuit of Disk Torque Converter;431
44.1;Abstract;431
44.2;1 Introduction;431
44.3;2 Design of Electromagnetic Torque Converter;433
44.3.1;2.1 Mathematical Model of Electromagnetic Torque Converter;434
44.3.2;2.2 Calculation of Spatial Distribution of Magnetic Field in the Air Gap of Converter;434
44.4;3 Implementation of Mathematical Model and Simulations of Torque Converter;437
44.5;4 Summary;439
44.6;References;439
45;Modelling the Anthropomorphic Mechanical Hand;441
45.1;Abstract;441
45.2;1 Introduction;441
45.3;2 Process of Human-Like Mechanical Hand Modeling;441
45.3.1;2.1 Main Development Goals for Our Anthropomorphic Hand Prototype;441
45.3.2;2.2 Concept of the Hand Construction;442
45.3.3;2.3 The Finger Construction;443
45.3.4;2.4 The Knuckle Design;444
45.3.5;2.5 Wrist Construction;445
45.4;3 Existing Projects for Comparison;446
45.4.1;3.1 FESTO ExoHand;446
45.4.2;3.2 Shadow Dexterous Hand;447
45.4.3;3.3 NASA Robonaut Hand;448
45.5;4 Conclusions;448
45.6;References;448
46;Uncertainty Analysis of the Two-Output RTD Circuits on the Example of Difference and Average Temperature Measurements;449
46.1;Abstract;449
46.2;1 Introduction;449
46.2.1;1.1 Theoretical Background About the Uncertainty of Multivariable Measurements;450
46.2.2;1.2 A Few Words About RTD Sensor Temperature Measurements;450
46.2.3;1.3 Related Works;451
46.3;2 Basic Formulas of a Single RTD Element;451
46.4;3 Temperature Difference Measurement in Two-Channel Circuit;452
46.5;4 Example Structures of the 2D Temperature Measuring Circuits;454
46.5.1;4.1 The Measurement of a Difference and an Average of Temperatures in the Loop with a Common Supply Current;454
46.5.2;4.2 A Differential Amplifier with Classic Bridge-Circuit;455
46.5.3;4.3 The Unconventional Double-Current Circuit;456
46.6;5 The Uncertainty of Temperature Difference and Average Measured Simultaneously (Two Sensors in One Circuit);457
46.6.1;5.1 Theoretical Background of the Multivariable Measurements;457
46.6.2;5.2 Numerical Example;458
46.7;6 Conclusions;459
46.8;References;460
47;Interactive Controller Aiding the Process of Upper Limb Rehabilitation;461
47.1;Abstract;461
47.2;1 Introduction;461
47.3;2 Research Objective;462
47.4;3 Device Structure;463
47.5;4 Methodology of Verification Tests;464
47.6;5 Results;465
47.7;6 Discussion;467
47.8;7 Conclusions;468
47.9;References;468
48;Double Physical Pendulum with Magnetic Interaction;469
48.1;Abstract;469
48.2;1 Introduction;469
48.2.1;1.1 Object of Investigations;469
48.3;2 Experimental Rig;470
48.3.1;2.1 Sensory System;473
48.4;3 Experiment;473
48.4.1;3.1 Moment of Force of Magnets Characteristics;473
48.4.2;3.2 Pendulum’s Time Series Recording;474
48.5;4 Conclusions;477
48.6;References;478
49;Model of Trough-Beam Laser Sensor for Determining the Real Position and Real Response Time;479
49.1;Abstract;479
49.2;1 Introduction;479
49.3;2 Unit Examined;480
49.4;3 Methodology of Research;481
49.5;4 Through-Beam Laser Sensor Model;483
49.6;5 Comparison of Model and Experiment Results;486
49.7;6 Conclusions;487
49.8;References;488
50;Application of the Parametric Identification While Modelling the Dynamics of the Electro-Hydraulic Drive;489
50.1;Abstract;489
50.2;1 Introduction;489
50.3;2 Mathematical Identification Model;490
50.4;3 Algorithm of the Model Identification of the Electro-Hydraulic Drive;492
50.4.1;3.1 Systems with Parameters Variable Over Time;493
50.4.2;3.2 Robust Estimation of the Parameters of the Electro-Hydraulic Servo-Drive Model;494
50.5;4 Comparison of the Efficiency of Estimation Algorithms of the Model Parameters – Model Verification;495
50.6;5 Summary;497
50.7;References;497
51;Author Index;498