Swider / Swider / Kciuk | Mechatronics 2017 - Ideas for Industrial Applications | E-Book | sack.de
E-Book

E-Book, Englisch, Band 934, 499 Seiten, eBook

Reihe: Advances in Intelligent Systems and Computing

Swider / Swider / Kciuk Mechatronics 2017 - Ideas for Industrial Applications


1. Auflage 2019
ISBN: 978-3-030-15857-6
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 934, 499 Seiten, eBook

Reihe: Advances in Intelligent Systems and Computing

ISBN: 978-3-030-15857-6
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book is devoted to the latest research results obtained by scientists and practitioners, who work on the development and applications of mechatronics, in particular in industrial practice. The topics included in the book cover such areas and issues as: measurement techniques in phenomena and mechatronic problems, robotics and design of mechatronic systems, research and application of mechatronics in medicine and sports, modern applications of mechatronics in rapidly changing modern mining, which puts strict demands on safety of people and the environment, application of mechatronics in the automotive industry in the design and production process of modern cars, defense technologies, extremely demanding aerospace industry, contemporary food industry, as well as didactics of mechatronics lead at different universities in the paradigm of Industry 4.0.
Swider / Swider / Kciuk Mechatronics 2017 - Ideas for Industrial Applications jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1;Foreword;6
2;Contents;8
3;About the Editors;13
4;Modelling Industrial Robot Fanuc ARC Mate 100iB in LabVIEW;15
4.1;Abstract;15
4.2;1 Introduction;15
4.3;2 Building the Model in LabVIEW and Make a Program;15
4.4;3 Tests;21
4.5;4 Conclusions;23
4.6;References;23
5;Recognition of Text Commands and Control of the Mobile Robot Starter Kit 2.0;24
5.1;Abstract;24
5.2;1 Introduction;24
5.3;2 Text Recognition;25
5.3.1;2.1 Picture from the Kinect Sensor;26
5.3.2;2.2 Preprocessing the Image;27
5.3.3;2.3 Determine the Greatest Contour;28
5.3.4;2.4 Defining Text Lines;29
5.3.5;2.5 Specifying the Contour Coordinates;29
5.3.6;2.6 Point Characteristic Method;30
5.3.7;2.7 Microsoft Kinect Integration and Starter Kit 2.0;31
5.4;3 Summary and Conclusions;32
5.5;References;32
6;System for Positioning of the Roadheader in Roadways of Hard Coal Mines;34
6.1;Abstract;34
6.2;1 Introduction;34
6.3;2 Design and Principle of Operation;35
6.4;3 Measuring Technology;36
6.5;4 Position and Orientation of the Roadheader;37
6.6;5 Testing the Physical Model of the Positioning System;41
6.7;6 Conclusions;43
6.8;References;43
7;Biomechatronic Simulator for Fencing Training Using Virtual Reality Technology;44
7.1;Abstract;44
7.2;1 Introduction;44
7.3;2 Aim;46
7.4;3 Materials and Methods;46
7.5;4 Discussion;49
7.6;5 Conclusions;49
7.7;References;50
8;Application of Industrial Automatic Systems for Operating Parameters Identification of Mining Machines;52
8.1;Abstract;52
8.2;1 Introduction;52
8.3;2 Characteristics of the Examined System;55
8.4;3 Research Methodology;57
8.5;4 Test Results;60
8.6;5 Conclusions;63
8.7;Acknowledgments;64
8.8;References;65
9;Collection of Essential Methods Among the Beams Analysis as an Introduction into the Dynamic Reverse Task Solution of Bending Vibration within Mechatronic System;66
9.1;Abstract;66
9.2;1 Introduction;66
9.3;2 The Algorithm of Exact Method Obtaining Within the Solution of Transverse Vibrating Beam;67
9.4;3 The Algorithm of Exact Method Obtaining the Dynamical Flexibility of Transverse Vibrating Beam;69
9.5;4 The Algorithms of the Approximate Methods Obtained Within the Dynamical Flexibilities of Transverse Vibrating Beam;69
9.6;5 Graphs Different Category’s Concerning Models of Vibrating Beams;71
9.7;6 Conclusion;73
9.8;Acknowledgement;73
9.9;References;73
10;Tunable Model of a Servo Hydraulic Tester for Shock Absorbers Vibrational Evaluation;75
10.1;Abstract;75
10.2;1 Introduction;75
10.3;2 Updating Model Parameters;76
10.4;3 First-Principle Data-Driven;77
10.5;4 Tuning of the Model;80
10.6;5 Summary;83
10.7;References;83
11;Modelling and System Identification of a Monotube Shock Absorber;84
11.1;Abstract;84
11.2;1 Introduction;84
11.3;2 Nonlinear Models Applicable to Reproduce Shock Absorber Dynamics;86
11.3.1;2.1 Low-Content of a Priori Knowledge Models;86
11.3.2;2.2 High-Content of a Priori Knowledge Models;87
11.4;3 Shock Absorber Model and Experimental Results;88
11.4.1;3.1 Shock Absorber Model;88
11.4.2;3.2 Low-Content of a Priori Knowledge Model Validation Results;89
11.4.3;3.3 High-Content of a Priori Knowledge Model Validation Results;91
11.5;4 Summary and Conclusions;93
11.6;References;93
12;Particle Image Velocimetry Technique Applied to Flow Evaluation Through a Shock Absorber Intake Valve;95
12.1;Abstract;95
12.2;1 Introduction;95
12.3;2 Particle Image Velocimetry;96
12.4;3 Experimental Setup;99
12.5;4 Measurement Results;102
12.6;5 Summary;104
12.7;References;104
13;Concept, Physical Design and Simulator of IRYS Social Robot Head;105
13.1;Abstract;105
13.2;1 Introduction;105
13.3;2 System Concept;107
13.4;3 Physical Head with Upper Trunk;108
13.5;4 Simulator;110
13.6;5 High-Level Control System and Unified Control Interface;111
13.7;6 Expressing Emotions of a Robot Head;111
13.8;7 Conclusions and Future Works;113
13.9;Acknowledgements;113
13.10;References;113
14;Cognitive Maintenance and Polymorphic Production as the Leading Industry 4.0 Paradigms;115
14.1;Abstract;115
14.2;1 Introduction to Industry 4.0;116
14.3;2 Maintenance in Today’s Industry;117
14.4;3 Cognitive Maintenance;117
14.5;4 Knowledge-Integrated Manufacturing;120
14.6;5 Polymorphic Production;121
14.7;6 Summary;122
14.8;Acknowledgement;123
14.9;References;123
15;Concept of Coupling the Rehabilitation Treadmill with Foot Pressure Sensors;125
15.1;Abstract;125
15.2;1 Introduction;125
15.3;2 The Set Up of the Test Bench;126
15.4;3 Integration of Components;127
15.5;4 Algorithm of the System Operation;128
15.6;5 Test of an Operation System Accuracy;130
15.7;6 Conclusions;131
15.8;References;132
16;Forecasting of Methane Hazard State in the Exploitation Wall Using Neural-Fuzzy System;133
16.1;Abstract;133
16.2;1 Introduction;133
16.3;2 Characteristics of Monitoring, Assessment and Methane Hazard Prediction System;135
16.3.1;2.1 Measuring Devices of Methane Hazard Monitoring System;136
16.3.2;2.2 Concept of Methane Hazard Assessment and Prediction of Methane Hazard;137
16.4;3 Characteristics of Neural-Fuzzy System for Prediction of Methane Hazard in Region of Longwall;139
16.4.1;3.1 Identification of the Research Area;139
16.4.2;3.2 Characteristics of the Developed System;139
16.5;4 Test Results;143
16.6;5 Conclusions;145
16.7;References;146
17;Modular Approach to the Planning of the Robot’s Tasks in the Context of Holons and Graph-Based Methods;148
17.1;Abstract;148
17.2;1 Introduction;148
17.3;2 The Comparison of Classic and Advanced Methods of Planning of the Robotic Tasks;150
17.3.1;2.1 The Classic Form of Robots’ Programming;150
17.3.2;2.2 Programming by Example/Demonstration;151
17.3.3;2.3 Task-Level Programming;152
17.4;3 Holons;153
17.4.1;3.1 Introduction;153
17.4.2;3.2 Relationship Between Holons and the Source Code of a Program;153
17.5;4 The Petri Nets;154
17.5.1;4.1 Introduction;154
17.5.2;4.2 The Petri Nets as a Model of a Program of the Robot;154
17.6;5 The Example of Using the Modular Approach to the Robot’s Task Planning by Means of Holons and Petri Nets;155
17.7;6 Conclusions;156
17.8;References;157
18;Detection and Recording of Acoustic Emission in Discrete IGBT Transistors;158
18.1;Abstract;158
18.2;1 Introduction;158
18.3;2 Measuring Method;159
18.4;3 Operation;160
18.5;4 The Analysis of Obtained Results;161
18.6;5 Conclusion;163
18.7;References;164
19;Zero-Sum Differential Game in Wheeled Mobile Robot Control;165
19.1;Abstract;165
19.2;1 Introduction;165
19.3;2 {\varvec H}_{\infty } Optimal Control. Zero-Sum Differential Game;166
19.3.1;2.1 {\varvec L}_{2} - Gain. {\varvec H}_{\infty } Control Problem;166
19.3.2;2.2 Zero-Sum Differential Game;167
19.4;3 Approximation Solution;168
19.4.1;3.1 Approximation a Zero-Sum Differential Game;168
19.5;4 Wheeled Mobile Robot;169
19.5.1;4.1 WMR Kinematics;169
19.5.2;4.2 WMR Dynamics;170
19.6;5 Numerical Simulation;171
19.6.1;5.1 Desired Trajectory;171
19.6.2;5.2 Simulation of Differential Game;172
19.6.3;5.3 Simulation {\varvec H}_{\infty } Control Problem;173
19.7;6 Summary;174
19.8;References;174
20;Numerical Analysis of the Dynamic Impact of a Gun Barrel During Firing;176
20.1;Abstract;176
20.2;1 Introduction;176
20.3;2 Analytical Approach to the Issue;177
20.4;3 Subject and Purpose of Research;178
20.5;4 Experimental Studies;179
20.6;5 Numerical Analysis FEM;180
20.6.1;5.1 Assumptions for Construction of Models;180
20.6.2;5.2 Simulation and Results;182
20.7;6 Comparison of Results;186
20.8;7 Conclusions;186
20.9;Acknowledgements;187
20.10;References;187
21;Concept of Sensor for Mining Machines Powered by Pressure Changes;189
21.1;Abstract;189
21.2;1 Introduction;189
21.3;2 Concept;190
21.4;3 Demand of Energy for Wireless Sensor;191
21.5;4 Tests of Piezoelectric Generator;192
21.5.1;4.1 Model of Piezoelectric Pile;193
21.5.2;4.2 Energy Generated by the Pile of Piezoelectric Transducers;193
21.5.3;4.3 Test Results;194
21.6;5 Summary;196
21.7;References;196
22;Model of Dynamics of the Three Wheeled Mobile Platform;198
22.1;Abstract;198
22.2;1 Introduction;198
22.3;2 Dynamics of the Platform;199
22.3.1;2.1 Design of the Prototype of the Platform;199
22.3.2;2.2 Model of Dynamics;200
22.3.3;2.3 Description of the Dynamics of the Three-Wheeled Mobile Platform;202
22.4;3 Conclusions;204
22.5;References;205
23;Control of Bucket Conveyor’s Output;206
23.1;Abstract;206
23.2;1 Introduction;206
23.3;2 Characteristics of Bucket Conveyor Operation in the Jig’s Mineral Processing Node;207
23.4;3 Identification of Model;208
23.5;4 System for Automatic Control of Bucket Conveyor Speed;210
23.6;5 Verification Tests of Impact of Automatic Control on Energy Consumption of the Conveyor’s Motor;211
23.7;6 Summary;212
23.8;References;213
24;Magnetorheological Suspension Based on Silicone Oil;215
24.1;Abstract;215
24.2;1 Introduction;215
24.3;2 Experimental;218
24.4;3 Results and Discussion;220
24.5;4 Conclusions;232
24.6;Acknowledgment;232
24.7;References;233
25;Experimental Verification of the Filtration Phenomena in Hydraulic Systems;234
25.1;Abstract;234
25.2;1 Introduction;234
25.3;2 Model of the Filtration Phenomena for Hydraulic Systems;235
25.4;3 Experimental Tests of Cleanliness of the Hydraulic Fluid During the Flushing of the Hydraulic Power Packs;238
25.5;4 Estimation the Total Flux Value ? of Solid Particulates;243
25.6;5 Summary;244
25.7;References;244
26;Role of Didactical Stations in Education Process of Industrial Automatics Technical Staff;245
26.1;Abstract;245
26.2;1 Introduction;245
26.3;2 Desktop Didactical Stations;245
26.3.1;2.1 Desktop Didactical Stations Consisting of a PLC Controller and HMI Panel Are Designed to Allow Learning the Following Skills;246
26.3.2;2.2 Desktop Didactical Station Consisting of a PLC Controller and UHF Modem (Fig. 2) Can Be Used to Carry out Following Tasks;248
26.3.3;2.3 Desktop Didactical Station Consisting of an Industrial Computer;248
26.3.4;2.4 Desktop Didactical Station Equipped with Frequency Inverter;249
26.4;3 Object Didactical Stations and Industrial Network Didactical Stations;250
26.4.1;3.1 Object Didactical Station - Processing Line Simulation;250
26.4.2;3.2 Plotter Didactical Station;251
26.4.3;3.3 Serial I/O – Industrial Network Station;251
26.5;4 Conclusions;253
26.6;References;253
27;Image-Based Method for Knee Ligament Injuries Detection;254
27.1;Abstract;254
27.2;1 Introduction;254
27.3;2 Methodology;256
27.3.1;2.1 Developed Algorithm;256
27.4;3 Results;259
27.5;4 Conclusions;259
27.6;Acknowledgements;260
27.7;References;260
28;Application of Surface Electromyographic Signals for Electric Rotor Control;262
28.1;Abstract;262
28.2;1 Introduction;262
28.3;2 Construction of Stationary Mechatronic Rotor;263
28.4;3 Simulation of Operation of Stationary Mechatronic Rotor;267
28.5;4 Conclusions;270
28.6;References;270
29;Voltage Source Inverter Synchronization with the Use of FFT Algorithm;272
29.1;Abstract;272
29.2;1 Introduction;272
29.3;2 Structure of Investigated System;273
29.4;3 Basics of Radix-2 DIT;274
29.5;4 Relationship Between FFT Data Vector Length and Frequency Resolution;276
29.6;5 Investigated Control System Properties and Computer Simulations Results;277
29.7;6 Real-Time Experimental Test Bench and Chosen Results;279
29.8;7 Conclusions;281
29.9;References;282
30;Experimental Research Assessing Threat of EOD Technicians from Explosive Blast;283
30.1;Abstract;283
30.2;1 Introduction;283
30.3;2 Methodology;284
30.4;3 Results;287
30.5;4 Conclusions;289
30.6;References;290
31;Theoretical Analysis of Piezoelectric Transformers in Different Configurations;291
31.1;Abstract;291
31.2;1 Introduction;291
31.3;2 Fundamentals;292
31.3.1;2.1 Piezoelectric Materials;292
31.3.2;2.2 Lagrangian Formalism for Piezoelectric Devices;292
31.4;3 Equations of Motion;293
31.4.1;3.1 PT Configurations;293
31.4.2;3.2 Assumptions;294
31.4.3;3.3 Derivation of the Equations of Motion for the Two-Segments E31–E33 Type PT (Classical Rosen–Type PT [1, 2]);294
31.4.4;3.4 Derivation of the Equations of Motion for the Two-Segments PT of the e33–e33 Type;296
31.4.5;3.5 Derivation of the Equations of Motion for the Two-Segments e31–e31 Type PT;297
31.4.6;3.6 Derivation of the Equations of Motion for the Three-Segments E31–E31 Type PT with the Driving Segment in the Middle (“Middle–Driving” – “Md”);297
31.4.7;3.7 Derivation of the Equations of Motion for the Three-Segments E31–E31 Type PT with the Generating Segment in the Middle (“Middle–Generating” – “Mg”);298
31.5;4 Results;298
31.5.1;4.1 Formulas;298
31.5.2;4.2 Input Data;299
31.5.3;4.3 Calculation Results;299
31.6;5 Discussion;301
31.7;6 Conclusions;302
31.8;References;302
32;Fracture Surface Analysis of the EN AW-2017A-T4 Specimens with Rectangular Section;304
32.1;Abstract;304
32.2;1 Introduction;304
32.3;2 Materials and Methods;305
32.3.1;2.1 Studied Material;305
32.3.2;2.2 Fatigue Experiments;306
32.3.3;2.3 Fracture Form and Roughness Measurements;307
32.4;3 Results and Discussion;307
32.4.1;3.1 Fracture Surface Geometry;307
32.4.2;3.2 Propagation and Rupture Roughness Analysis;309
32.5;4 Conclusions;311
32.6;References;311
33;Autonomous Robot Control System for Automation of Manipulations;312
33.1;Abstract;312
33.2;1 Purpose of Research;312
33.3;2 Research Concept and Plan;313
33.3.1;2.1 Research Method;314
33.4;3 Design Assumptions of Projected System;314
33.5;4 Technical Realization;317
33.5.1;4.1 Computer Operation of a Robot;317
33.5.2;4.2 Workspace Monitoring;318
33.5.3;4.3 Artificial Intelligence Application;319
33.6;5 Anticipated Research Result;320
33.7;References;321
34;Advantages of Using Industrial Sensor Interfaces at the Machine Design Stage;322
34.1;Abstract;322
34.2;1 Introduction;322
34.3;2 Classic Approach to the Topic;323
34.4;3 Purpose of the Technology;324
34.5;4 Summary;327
34.6;References;327
35;Bisection Method for Measuring Integral Nonlinearity of Precision Thermometry Bridges;328
35.1;Abstract;328
35.2;1 Introduction;329
35.3;2 Method of Measurement by AC Bridge;329
35.4;3 Reasons for Nonlinearity of AC Bridges;331
35.5;4 Method of Controlling the Bridge Integral Nonlinearity;332
35.6;5 Discussion of Method Used in Practice;333
35.7;6 Bisection Method;335
35.7.1;6.1 Methodology for Measuring Nonlinearity;335
35.7.2;6.2 Selecting the Number of Control Points;337
35.7.3;6.3 Device for Controlling Nonlinearity;337
35.7.4;6.4 Experimental Results;338
35.8;References;338
36;Applications of Composite Piezoelectric Transducers in Innovative Mechatronic Systems;340
36.1;Abstract;340
36.2;1 Introduction;340
36.2.1;1.1 Innovative Traffic Surveillance Systems with Piezoelectric Transducers;341
36.3;2 Measurements of the Dynamic Response of the Road Barrier;343
36.4;3 Conclusions;347
36.5;References;348
37;Sensor-Less Bilateral Teleoperation System Based on Non Linear Inverse Modelling with Signal Prediction;351
37.1;Abstract;351
37.2;1 Introduction;351
37.3;2 Problem Statement;352
37.4;3 Inverse Model with Prediction of Input and Output Signals;354
37.5;4 Experiment;358
37.6;5 Conclusions;359
37.7;Acknowledgments;360
37.8;References;360
38;Time Constant and Model-Free Signal Prediction in Communication Channel of Teleoperation System;362
38.1;Abstract;362
38.2;1 Introduction;362
38.3;2 Problem Statement;364
38.4;3 The Prediction Block;366
38.5;4 Experiment;367
38.6;5 Conclusions;371
38.7;Acknowledgment;371
38.8;References;371
39;Analysis of Selected Factors’ Influence on the Specific Range of Modern Jet Transport Aircraft as a Complex Mechatronic System;374
39.1;Abstract;374
39.2;1 Introduction;374
39.3;2 Data Sources;375
39.4;3 Flight Data Characteristics;376
39.5;4 Stable Segment Quality;380
39.6;5 Tail Number Specific Cruise Stability;381
39.7;6 Tail Number Specific Cruise Stability;382
39.8;7 Results;384
39.8.1;7.1 Variants and Gross Mass Effect on Cruise Performance;384
39.8.2;7.2 Air Temperature;385
39.8.3;7.3 Optimal Altitude;386
39.8.4;7.4 Mach Number;387
39.9;8 Conclusion;389
39.10;References;390
40;Investigation of Newly Developed Microwave Heated Moisture Analyzer Measurements of Ketchup and Milk Samples in Climatic Chamber;391
40.1;Abstract;391
40.2;1 Introduction;391
40.3;2 Materials and Methods;394
40.4;3 Results;395
40.5;4 Discussion;396
40.6;References;397
41;Computer Aided Planning of Adept Six-300 Robot Trajectories;398
41.1;Abstract;398
41.2;1 Introduction;398
41.3;2 The Characteristics of the Program Tobject;400
41.4;3 The Determination of the Geometric Parameters;401
41.4.1;3.1 Parameters of the Station Frame;401
41.4.2;3.2 Parameters of the Gripper;404
41.5;4 The Calculations of an Exemplary Desired Trajectory and Its Realization;404
41.5.1;4.1 The Position and Orientation of the Manipulation Object;404
41.5.2;4.2 The Exemplary Desired Trajectory of the Manipulator;405
41.5.3;4.3 The Realization of the Desired Trajectory of the Manipulation Object;406
41.6;5 Summary;407
41.7;References;407
42;Control of Selected Operational Parameters of the Scraper Conveyor to Improve Its Working Conditions;409
42.1;Abstract;409
42.2;1 Introduction;409
42.3;2 Computational Model of AFC;410
42.4;3 Algorithm for Controlling the AFC Operation;412
42.5;4 Results of Analysis of the Algorithm Use;414
42.6;5 Conclusions;418
42.7;Acknowledgments;418
42.8;References;418
43;Power Quality in the “Shore to Ship” System – The Improvement of the Unbalanced Voltage Factor;420
43.1;Abstract;420
43.2;1 Introduction;420
43.3;2 The Quality of Electricity in STS System; Voltage Unbalance;422
43.4;3 Improving the Rate of Voltage Unbalance in the STS System Using Shunt Active Filter;423
43.5;4 The Simulation Research on the Shunt Active Filter in STS System;427
43.6;5 Conclusions;429
43.7;References;430
44;Mathematical Modelling and Selecting the Parameters of Magnetic Circuit of Disk Torque Converter;431
44.1;Abstract;431
44.2;1 Introduction;431
44.3;2 Design of Electromagnetic Torque Converter;433
44.3.1;2.1 Mathematical Model of Electromagnetic Torque Converter;434
44.3.2;2.2 Calculation of Spatial Distribution of Magnetic Field in the Air Gap of Converter;434
44.4;3 Implementation of Mathematical Model and Simulations of Torque Converter;437
44.5;4 Summary;439
44.6;References;439
45;Modelling the Anthropomorphic Mechanical Hand;441
45.1;Abstract;441
45.2;1 Introduction;441
45.3;2 Process of Human-Like Mechanical Hand Modeling;441
45.3.1;2.1 Main Development Goals for Our Anthropomorphic Hand Prototype;441
45.3.2;2.2 Concept of the Hand Construction;442
45.3.3;2.3 The Finger Construction;443
45.3.4;2.4 The Knuckle Design;444
45.3.5;2.5 Wrist Construction;445
45.4;3 Existing Projects for Comparison;446
45.4.1;3.1 FESTO ExoHand;446
45.4.2;3.2 Shadow Dexterous Hand;447
45.4.3;3.3 NASA Robonaut Hand;448
45.5;4 Conclusions;448
45.6;References;448
46;Uncertainty Analysis of the Two-Output RTD Circuits on the Example of Difference and Average Temperature Measurements;449
46.1;Abstract;449
46.2;1 Introduction;449
46.2.1;1.1 Theoretical Background About the Uncertainty of Multivariable Measurements;450
46.2.2;1.2 A Few Words About RTD Sensor Temperature Measurements;450
46.2.3;1.3 Related Works;451
46.3;2 Basic Formulas of a Single RTD Element;451
46.4;3 Temperature Difference Measurement in Two-Channel Circuit;452
46.5;4 Example Structures of the 2D Temperature Measuring Circuits;454
46.5.1;4.1 The Measurement of a Difference and an Average of Temperatures in the Loop with a Common Supply Current;454
46.5.2;4.2 A Differential Amplifier with Classic Bridge-Circuit;455
46.5.3;4.3 The Unconventional Double-Current Circuit;456
46.6;5 The Uncertainty of Temperature Difference and Average Measured Simultaneously (Two Sensors in One Circuit);457
46.6.1;5.1 Theoretical Background of the Multivariable Measurements;457
46.6.2;5.2 Numerical Example;458
46.7;6 Conclusions;459
46.8;References;460
47;Interactive Controller Aiding the Process of Upper Limb Rehabilitation;461
47.1;Abstract;461
47.2;1 Introduction;461
47.3;2 Research Objective;462
47.4;3 Device Structure;463
47.5;4 Methodology of Verification Tests;464
47.6;5 Results;465
47.7;6 Discussion;467
47.8;7 Conclusions;468
47.9;References;468
48;Double Physical Pendulum with Magnetic Interaction;469
48.1;Abstract;469
48.2;1 Introduction;469
48.2.1;1.1 Object of Investigations;469
48.3;2 Experimental Rig;470
48.3.1;2.1 Sensory System;473
48.4;3 Experiment;473
48.4.1;3.1 Moment of Force of Magnets Characteristics;473
48.4.2;3.2 Pendulum’s Time Series Recording;474
48.5;4 Conclusions;477
48.6;References;478
49;Model of Trough-Beam Laser Sensor for Determining the Real Position and Real Response Time;479
49.1;Abstract;479
49.2;1 Introduction;479
49.3;2 Unit Examined;480
49.4;3 Methodology of Research;481
49.5;4 Through-Beam Laser Sensor Model;483
49.6;5 Comparison of Model and Experiment Results;486
49.7;6 Conclusions;487
49.8;References;488
50;Application of the Parametric Identification While Modelling the Dynamics of the Electro-Hydraulic Drive;489
50.1;Abstract;489
50.2;1 Introduction;489
50.3;2 Mathematical Identification Model;490
50.4;3 Algorithm of the Model Identification of the Electro-Hydraulic Drive;492
50.4.1;3.1 Systems with Parameters Variable Over Time;493
50.4.2;3.2 Robust Estimation of the Parameters of the Electro-Hydraulic Servo-Drive Model;494
50.5;4 Comparison of the Efficiency of Estimation Algorithms of the Model Parameters – Model Verification;495
50.6;5 Summary;497
50.7;References;497
51;Author Index;498



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.