Swamynathan | Mastering Machine Learning with Python in Six Steps | Buch | 978-1-4842-4946-8 | sack.de

Buch, Englisch, 457 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 887 g

Swamynathan

Mastering Machine Learning with Python in Six Steps

A Practical Implementation Guide to Predictive Data Analytics Using Python
2. Auflage 2019
ISBN: 978-1-4842-4946-8
Verlag: Apress

A Practical Implementation Guide to Predictive Data Analytics Using Python

Buch, Englisch, 457 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 887 g

ISBN: 978-1-4842-4946-8
Verlag: Apress


Explore fundamental to advanced Python 3 topics in six steps, all designed to make you a worthy practitioner. This updated version’s approach is based on the “six degrees of separation” theory, which states that everyone and everything is a maximum of six steps away and presents each topic in two parts: theoretical concepts and practical implementation using suitable Python 3 packages.

You’ll start with the fundamentals of Python 3 programming language, machine learning history, evolution, and the system development frameworks. Key data mining/analysis concepts, such as exploratory analysis, feature dimension reduction, regressions, time series forecasting and their efficient implementation in Scikit-learn are covered as well. You’ll also learn commonly used model diagnostic and tuning techniques. These include optimal probability cutoff point for class creation, variance, bias, bagging, boosting, ensemble voting, grid search, random search, Bayesian optimization, and the noise reduction technique for IoT data. 

Finally, you’ll review advanced text mining techniques, recommender systems, neural networks, deep learning, reinforcement learning techniques and their implementation. All the code presented in the book will be available in the form of iPython notebooks to enable you to try out these examples and extend them to your advantage.

What You'll Learn

  • Understand machine learning development and frameworks
  • Assess model diagnosis and tuning in machine learning
  • Examine text mining, natuarl language processing (NLP), and recommender systems
  • Review reinforcement learning and CNN
Who This Book Is For

Python developers, data engineers, and machine learning engineers looking to expand their knowledge or career into machine learning area.

Swamynathan Mastering Machine Learning with Python in Six Steps jetzt bestellen!

Zielgruppe


Professional/practitioner


Autoren/Hrsg.


Weitere Infos & Material


Chapter 1: Step 1 – Getting Started with Python.- Chapter 2 : Step 2 – Introduction to Machine Learning.- Chapter 3: Step 3 – Fundamentals of Machine Learning.- Chapter 4: Step 4 – Model Diagnosis and Tuning.- Chapter 5: Step 5 – Text Mining, NLP AND Recommender Systems.- Chapter 6: Step 6 – Deep and Reinforcement Learning.- Chapter 7 : Conclusion.



Manohar Swamynathan is a data science practitioner and an avid programmer, with over 14+ years of experience in various data science related areas that include data warehousing, Business Intelligence (BI), analytical tool development, ad-hoc analysis, predictive modeling, data science product development, consulting, formulating strategy and executing analytics program. He's had a career covering life cycle of data across different domains such as US mortgage banking, retail/e-commerce, insurance, and industrial IoT. He has a bachelor's degree with a specialization in physics, mathematics, computers, and a master's degree in project management. He's currently living in Bengaluru, the silicon valley of India. 



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.