Svoboda / Zhao / Burgos | Simulation and Synthesis in Medical Imaging | Buch | 978-3-030-87591-6 | sack.de

Buch, Englisch, 154 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 265 g

Reihe: Image Processing, Computer Vision, Pattern Recognition, and Graphics

Svoboda / Zhao / Burgos

Simulation and Synthesis in Medical Imaging

6th International Workshop, SASHIMI 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings
1. Auflage 2021
ISBN: 978-3-030-87591-6
Verlag: Springer International Publishing

6th International Workshop, SASHIMI 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings

Buch, Englisch, 154 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 265 g

Reihe: Image Processing, Computer Vision, Pattern Recognition, and Graphics

ISBN: 978-3-030-87591-6
Verlag: Springer International Publishing


This book constitutes the refereed proceedings of the 6th International Workshop on Simulation and Synthesis in Medical Imaging, SASHIMI 2021, held in conjunction with MICCAI 2021, in Strasbourg, France, in September 2021.*

The 14 full papers presented were carefully reviewed and selected from 18 submissions. The contributions span the following broad categories in alignment with the initial call-for-papers: methods based on generative models or adversarial learning for MRI/CT/ microscopy image synthesis, and several applications of image synthesis and simulation for data augmentation, image enhancement, or segmentation.

*The workshop was held virtually.

Svoboda / Zhao / Burgos Simulation and Synthesis in Medical Imaging jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Method-Oriented Papers.- Detail matters: high-frequency content for realistic synthetic brain MRI generation.- Joint Image and Label Self-Super-Resolution.- Super-resolution by Latent Space Exploration: Training with Poorly-aligned Clinical and Micro CT Image Dataset.- A Glimpse into the Future: Disease Progression Simulation for Breast Cancer in Mammograms.- Synth-by-Reg (SbR): Contrastive learning for synthesis-based registration of paired images.- Learning-based Template Synthesis For Groupwise Image Registration.- The role of MRI physics in brain segmentation CNNs: achieving acquisition invariance and instructive uncertainties.- Transfer Learning in Optical Microscopy.- X-ray synthesis based on triangular mesh models using GPU-accelerated ray tracing for multi-modal breast image registration.- Application-Oriented Papers.- Frozen-to-Paraffin: Categorization of Histological Frozen Sections by the Aid of Paraffin Sections and Generative Adversarial Networks.- SequenceGAN: Generating Fundus Fluorescence Angiography Sequences from Structure Fundus Image .- Cerebral Blood Volume Prediction based on Multi-modality Magnetic Resonance Imaging.- Cine-MRI simulation to evaluate tumor tracking.- GAN-based synthetic FDG PET images from T1 brain MRI can serve to improve performance of deep unsupervised anomaly detection models.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.