Suzuki | Statistical Learning with Math and R | Buch | 978-981-15-7567-9 | sack.de

Buch, Englisch, 217 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 359 g

Suzuki

Statistical Learning with Math and R

100 Exercises for Building Logic
1. Auflage 2020
ISBN: 978-981-15-7567-9
Verlag: Springer Nature Singapore

100 Exercises for Building Logic

Buch, Englisch, 217 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 359 g

ISBN: 978-981-15-7567-9
Verlag: Springer Nature Singapore


The most crucial ability for machine learning and data science is mathematical logic for grasping their essence rather than knowledge and experience. This textbook approaches the essence of machine learning and data science by considering math problems and building R programs.

As the preliminary part, Chapter 1 provides a concise introduction to linear algebra, which will help novices read further to the following main chapters. Those succeeding chapters present essential topics in statistical learning: linear regression, classification, resampling, information criteria, regularization, nonlinear regression, decision trees, support vector machines, and unsupervised learning.

Each chapter mathematically formulates and solves machine learning problems and builds the programs. The body of a chapter is accompanied by proofs and programs in an appendix, with exercises at the end of the chapter. Because the book is carefully organized to provide the solutions to the exercisesin each chapter, readers can solve the total of 100 exercises by simply following the contents of each chapter.

This textbook is suitable for an undergraduate or graduate course consisting of about 12 lectures. Written in an easy-to-follow and self-contained style, this book will also be perfect material for independent learning.

Suzuki Statistical Learning with Math and R jetzt bestellen!

Zielgruppe


Upper undergraduate


Autoren/Hrsg.


Weitere Infos & Material


Chapter 1: Linear Algebra.- Chapter 2: Linear Regression.- Chapter 3: Classification.- Chapter 4: Resampling.- Chapter 5: Information Criteria.- Chapter 6: Regularization.- Chapter 7: Nonlinear Regression.- Chapter 8: Decision Trees.- Chapter 9: Support Vector Machine.- Chapter 10: Unsupervised Learning.


Joe Suzuki is a professor of statistics at Osaka University, Japan. He has published more than 100 papers on graphical models and information theory.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.