Suzuki | Sparse Estimation with Math and Python | Buch | 978-981-16-1437-8 | www2.sack.de

Buch, Englisch, 246 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 394 g

Suzuki

Sparse Estimation with Math and Python

100 Exercises for Building Logic
1. Auflage 2021
ISBN: 978-981-16-1437-8
Verlag: Springer

100 Exercises for Building Logic

Buch, Englisch, 246 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 394 g

ISBN: 978-981-16-1437-8
Verlag: Springer


The most crucial ability for machine learning and data science is mathematical logic for grasping their essence rather than knowledge and experience. This textbook approaches the essence of sparse estimation by considering math problems and building Python programs. 

Each chapter introduces the notion of sparsity and provides procedures followed by mathematical derivations and source programs with examples of execution. To maximize readers’ insights into sparsity, mathematical proofs are presented for almost all propositions, and programs are described without depending on any packages. The book is carefully organized to provide the solutions to the exercises in each chapter so that readers can solve the total of 100 exercises by simply following the contents of each chapter.

This textbook is suitable for an undergraduate or graduate course consisting of about 15 lectures (90 mins each). Written in an easy-to-follow and self-contained style, this book will also be perfect material for independent learning by data scientists, machine learning engineers, and researchers interested in linear regression, generalized linear lasso, group lasso, fused lasso, graphical models, matrix decomposition, and multivariate analysis.
This book is one of a series of textbooks in machine learning by the same Author. Other titles are: 
  • Statistical Learning with Math and R (https://www.springer.com/gp/book/9789811575679)
  • Statistical Learning with Math and Pyth (https://www.springer.com/gp/book/9789811578762)
  • Sparse Estimation with Math and R

Suzuki Sparse Estimation with Math and Python jetzt bestellen!

Zielgruppe


Upper undergraduate


Autoren/Hrsg.


Weitere Infos & Material


Chapter 1: Linear Regression.- Chapter 2: Generalized Linear Regression.- Chapter 3: Group Lasso.- Chapter 4: Fused Lasso.- Chapter 5: Graphical Model.- Chapter 6: Matrix Decomposition.- Chapter 7: Multivariate Analysis.


Joe Suzuki is a professor of statistics at Osaka University, Japan. He has published more than 100 papers on graphical models and information theory.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.