Suslina / Ingster | Nonparametric Goodness-of-Fit Testing Under Gaussian Models | Buch | 978-0-387-95531-5 | sack.de

Buch, Englisch, 457 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 1460 g

Reihe: Lecture Notes in Statistics

Suslina / Ingster

Nonparametric Goodness-of-Fit Testing Under Gaussian Models


2003
ISBN: 978-0-387-95531-5
Verlag: Springer

Buch, Englisch, 457 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 1460 g

Reihe: Lecture Notes in Statistics

ISBN: 978-0-387-95531-5
Verlag: Springer


This book presents the modern theory of nonparametric goodness-of-fit testing. It fills the gap in modern nonparametric statistical theory by discussing hypothesis testing and addresses mathematical statisticians who are interesting in the theory of non-parametric statistical inference. It will be of interest to specialists who are dealing with applied non-parametric statistical problems relevant in signal detection and transmission and in technical and medical diagnostics among others.

Suslina / Ingster Nonparametric Goodness-of-Fit Testing Under Gaussian Models jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1 Introduction.- 1.1 Tests.- 1.2 One-Dimensional Parameter.- 1.3 Multidimensional Parameter.- 1.4 Infinite-Dimensional Parameter.- 1.5 Problems of the Study and Main Results.- 1.6 Methods of the Study.- 1.7 Structure of the Book.- 2 An Overview.- 2.1 Models.- 2.2 Hypothesis Testing Problem.- 2.3 Bayesian Approach in Hypothesis Testing.- 2.4 Minimax Approach in Hypothesis Testing.- 2.5 Asymptotics in Hypothesis Testing.- 2.6 Minimax Distinguishability in Goodness-of-Fit Problems.- 2.7 Norms and Wavelet Transform.- 2.8 Short Overview of Minimax Estimation.- 2.9 Constraints of Interest.- 2.10 Rates in Estimation and in Hypothesis Testing.- 3 Minimax Distinguishability.- 3.1 Minimax Properties of Test Families.- 3.2 Asymptotic Minimaxity for Square Norms.- 3.3 Bayesian Approach under a Gaussian Model.- 3.4 Triviality and Classical Asymptotics.- 3.5 Distinguishability Conditions for Smooth Signals.- 4 Sharp Asymptotics. I.- 4.1 Tests Based on Linear Statistics and Convex Alternatives.- 4.2 Two-Sided Constraints for the Positive Alternatives, p ? 1, q ? p.- 4.3 Sharp Asymptotics of Gaussian Type: Product Priors.- 4.4 Sharp Asymptotics: Asymptotic Degeneracy.- 5 Sharp Asymptotics. II.- 5.1 Tests Based on Log-Likelihood Statistics and Thresholding.- 5.2 Extreme Problem in the Space of Sequences of Measures.- 5.3 Separation of the Problem.- 5.4 Solution of One-Dimensional Problems.- 5.5 Sharp Asymptotics for ln-Balls.- 6 Gaussian Asymptotics for Power and Besov Norms.- 6.1 Extreme Problems.- 6.2 Principal Types of Gaussian Asymptotics.- 6.3 Frontier Log-Types of Gaussian Asymptotics.- 6.4 Graphical Presentation.- 6.5 Remarks on the Proofs of Theorems 6.1–6.4.- 6.6 Proof of Theorems 6.1 and 6.3 for p ? 2, q ? p, and p = q.- 6.7 Extreme Problem for Power Norms: p ? q.-6.8 Properties of the Extreme Sequences for Power Norms.- 6.9 Extreme Problem for Besov Norms.- 7 Adaptation for Power and Besov Norms.- 7.1 Adaptive Setting.- 7.2 Lower Bounds.- 7.3 Upper Bounds for Power Norms.- 7.4 Upper Bounds for Besov Norms.- 8 High-Dimensional Signal Detection.- 8.1 The Bayesian Signal Detection Problem.- 8.2 Multichannel Signal Detection Problems.- 8.3 Minimax Signal Detection for ln-Balls.- 8.4 Proof of Upper Bounds.- 8.5 Testing a Hypothesis which Is Close to a Simple Hypothesis.- A Appendix.- A.1 Proof of Proposition 2.16.- A.2 Proof of Proposition 5.3.- A.2.1 Properties of Statistics under Alternatives.- A.2.2 Evaluations of Type II Errors.- A.3 Study of the Extreme Problem for Power Norms.- A.3.1 Solution of the System (6.86), (6.87).- A.3.4 Solution of the Extreme Problem (6.88).- A.3.8 Proofs of Propositions 6.1, 6.2.- A.4 Study of the Extreme Problem for Besov Norms.- A.4.1 Solution of the System (6.110), (6.111).- A.4.2 Solution of the Extreme Problem (6.112).- A.4.5 Upper Bounds.- A.4.6 Lower Bounds.- A.4.7 Proof of Proposition 6.3.- A.5 Proof of Lemma 7.4.- A.6 Proofs of Lemmas 8.2, 8.3, 8.4, 8.6.- References.- Parameter and Function Index.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.