Sun / Lai / Wu Particle Swarm Optimisation

Classical and Quantum Perspectives
Erscheinungsjahr 2012
ISBN: 978-1-4398-3577-7
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

Classical and Quantum Perspectives

E-Book, Englisch, 419 Seiten

Reihe: Chapman & Hall/CRC Numerical Analysis and Scientific Computing Series

ISBN: 978-1-4398-3577-7
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Although the particle swarm optimisation (PSO) algorithm requires relatively few parameters and is computationally simple and easy to implement, it is not a globally convergent algorithm. In Particle Swarm Optimisation: Classical and Quantum Perspectives, the authors introduce their concept of quantum-behaved particles inspired by quantum mechanics, which leads to the quantum-behaved particle swarm optimisation (QPSO) algorithm. This globally convergent algorithm has fewer parameters, a faster convergence rate, and stronger searchability for complex problems.

The book presents the concepts of optimisation problems as well as random search methods for optimisation before discussing the principles of the PSO algorithm. Examples illustrate how the PSO algorithm solves optimisation problems. The authors also analyse the reasons behind the shortcomings of the PSO algorithm.

Moving on to the QPSO algorithm, the authors give a thorough overview of the literature on QPSO, describe the fundamental model for the QPSO algorithm, and explore applications of the algorithm to solve typical optimisation problems. They also discuss some advanced theoretical topics, including the behaviour of individual particles, global convergence, computational complexity, convergence rate, and parameter selection. The text closes with coverage of several real-world applications, including inverse problems, optimal design of digital filters, economic dispatch problems, biological multiple sequence alignment, and image processing. MATLAB®, Fortran, and C++ source codes for the main algorithms are provided on an accompanying CD-ROM.

Helping you numerically solve optimisation problems, this book focuses on the fundamental principles and applications of PSO and QPSO algorithms. It not only explains how to use the algorithms, but also covers advanced topics that establish the groundwork for understanding state-of-the-art research in the field.

Sun / Lai / Wu Particle Swarm Optimisation jetzt bestellen!

Zielgruppe


Students and researchers in computing, algorithms, and optimization.

Weitere Infos & Material


Introduction
Optimisation Problems and Optimisation Methods
Random Search Techniques
Metaheuristic Methods
Swarm Intelligence

Particle Swarm Optimisation
Overview
Motivations
PSO Algorithm: Basic Concepts and the Procedure
Paradigm: How to Use PSO to Solve Optimisation Problems
Some Harder Examples

Some Variants of Particle Swarm Optimisation
Why Does the PSO Algorithm Need to Be Improved?
Inertia and Constriction—Acceleration Techniques for PSO
Local Best Model
Probabilistic Algorithms
Other Variants of PSO

Quantum-Behaved Particle Swarm Optimisation
Overview
Motivation: From Classical Dynamics to Quantum Mechanics
Quantum Model: Fundamentals of QPSO
QPSO Algorithm
Some Essential Applications
Some Variants of QPSO
Summary

Advanced Topics
Behaviour Analysis of Individual Particles
Convergence Analysis of the Algorithm
Time Complexity and Rate of Convergence
Parameter Selection and Performance
Summary

Industrial Applications
Inverse Problems for Partial Differential Equations
Inverse Problems for Non-Linear Dynamical Systems
Optimal Design of Digital Filters
ED Problems
MSA
Image Segmentation
Image Fusion

Index

References appear at the end of each chapter.


Jun Sun is an associate professor in the Department of Computer Science and Technology at Jiangnan University. He is also a researcher at the Key Laboratory of Advanced Process Control for Light Industry in China. He has a Ph.D. in control theory and control engineering. His research interests include computational intelligence, numerical optimisation, and machine learning.

Choi-Hong Lai is a professor of numerical mathematics in the Department of Mathematical Sciences at the University of Greenwich. He has a Ph.D. in computational aerodynamics and PDEs. His research interests include numerical PDEs, numerical algorithms, and parallel algorithms for industrial applications, such as aeroacoustics, inverse problems, computational finance, and image processing.

Xiao-Jun Wu is a professor at Jiangnan University. He has a Ph.D. in pattern recognition and intelligent systems. He has published more than 150 papers on pattern recognition, computer vision, fuzzy systems, neural networks, and intelligent systems.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.