Sun / He / Feng | Biometric Recognition | E-Book | sack.de
E-Book

Sun / He / Feng Biometric Recognition

14th Chinese Conference, CCBR 2019, Zhuzhou, China, October 12–13, 2019, Proceedings
Erscheinungsjahr 2019
ISBN: 978-3-030-31456-9
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

14th Chinese Conference, CCBR 2019, Zhuzhou, China, October 12–13, 2019, Proceedings

E-Book, Englisch, 521 Seiten, eBook

Reihe: Image Processing, Computer Vision, Pattern Recognition, and Graphics

ISBN: 978-3-030-31456-9
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



The LNCS volume 11818 constitutes the proceedings of the 14th Chinese Conference on Biometric Recognition, held in Zhuzhou, China, in October 2019.  The 56 papers presented in this book were carefully reviewed and selected from 74 submissions. The papers cover a wide range of topics such as face recognition and analysis; hand-based biometrics; eye-based biometrics; gesture, gait, and action; emerging biometrics; feature extraction and classi?cation theory; and behavioral biometrics.
Sun / He / Feng Biometric Recognition jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Hand-Based Biometrics.- Local Discriminative Direction Extraction for Palmprint Recognition.- Fingerprint Presentation Attack Detection via Analyzing Fingerprint Pairs.- Finger Vein Recognition Based on Double-Orientation Coding Histogram.- Fingerprint Classi?cation Based on Lightweighyt Neural Networks.- 3D Fingerprint Gender Classi?cation Using Deep Learning.- A Novel Method for Finger Vein Recognition.- Rolled Fingerprint Mosaicking Algorithm Based on Block Scale.- Study and Realization of Partial Fingerprint Mosaicking Technology for Mobile Devices.- Gesture, Gait and Action.- Multiscale Temporal Network for Video-based Gait Recognition.- Global and Local Spatial-Attention Network for Isolated Gesture Recognition.- Authentication System Design Based On Dynamic Hand Gesture.- Feature Extraction and Classi?cation Theory.- Structure Feature Learning: Constructing Functional Connectivity Network forAlzheimer’s disease Identi?cation and Analysis.- Weakly Supervised Learning of Image Emotion Analysis Based on Cross-spatial Pooling.- Embarrassingly Easy Zero-Shot Image Recognition.- On the Generalization of GAN Image Forensics.- Face.- Deep Residual Equivariant Mapping for Multi-Angle Face Recognition.- The Impact of Data Correlation on Identi?cation of Computer-Generated Face Images.- Face Image Deblurring Based on Iterative Spiral Optimization.- AdaptiveNet: Toward an E?cient Face Alignment Algorithm.- Cross-dimension Transfer Learning for Video-based Facial Expression Recognition.- Exploring Shape Deformation in 2D Images for Facial Expression Recognition.- Facial attractiveness prediction by Deep Adaptive Label Distribution Learning.- LWFD:A Simple Light-Weight Network for Face Detection.- Dairy Cow Tiny Face Recognition Based on Convolutional Neural Networks.- Reconstructed Face Recognition.- A Two-Stage Method for Assessing Facial Paralysis Severity by Fusing Multiple Classi?ers.- Latent Spatial Features Based on Generative Adversarial Networks for Face Anti-spoo?ng.- Similarity Measurement between Reconstructed 3D Face and 2D Face based on Deep Learning.- Real-time Face Occlusion Recognition Algorithm Based on Feature Fusion.- Joint Face Detection and Alignment Using Focal Loss-based Multi-task Convolutional Neural Networks.- A Face Recognition Work?ow Based upon Similarity Measurement.- 106-Point Facial Landmark Localization with Mobile Networks Based on Regression.- Eye-Based Biometrics.- Long Range Pupil Location Algorithm Based on the Improved Circle Fitting Method.- Multi-source heterogeneous iris recognition using Locality Preserving Projection.- Iris Recognition Based on Adaptive Optimization Log-Gabor Filter and RBF Neural Network.- Retinal vessel segmentation method based on improved deep U-net.- Multi-pyramid Optimized Mask R-CNN for Iris Detection and Segmentation.- Constrained Sequence Iris Quality Evaluation Based on Causal Relationship Decision Reasoning.- Iris Image Super Resolution based on GANs with Adversarial Triplets.- SDItg-Di?: Noisy Iris Localization based on Statistical Denoising.- End to end robust recognition method for iris using a dense deep convolutional neural network.- Emerging Biometrics.- X-Ray Image With Prohibited Items Synthesis Based on Generative Adversarial Network.- A Deep learning Approach to Web Bot Detection Using Mouse Behavioral Biometrics.- Multi-task Deep Learning for Child Gender and Age Determination on Hand Radiographs.- Shoe Pattern Recognition: A Benchmark.- Learning Discriminative Representation for ECG Biometrics Based on Multi-Scale 1D-PDV.- O?-line handwritten signature recognition based on discrete curvelet transform.- Research on automatic classi?cation method of footwear under low resolution condition.- Behavioral Biometrics.- Low-resolution Person Re-identi?cation By a Discriminative Resolution-invariant Network.- DHML: Deep Heterogeneous Metric Learning for VIS-NIR Person Re-identi?cation.- Teager Energy Operator based Features with x-vector for Replay Attack Detection.- Video Human Behaviour Recognition Based on Improved SVM KNN for Traceability of Planting Industry.- Application of Unscented Kalman Filter in Tracking of Video Moving Target.- Similarity Scores based Re-Classi?cation for Open-Set Person Re-Identi?cation.- The GMM and I-vector Systems Based on Spoo?ng Algorithms for Speaker Spoo?ng Detection.- Feature Enhancement for Joint Human and Head Detection.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.