Buch, Englisch, 271 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 600 g
Reihe: Perspectives in Formal Induction, Revision and Evolution
Buch, Englisch, 271 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 600 g
Reihe: Perspectives in Formal Induction, Revision and Evolution
ISBN: 978-981-16-9293-2
Verlag: Springer Nature Singapore
This second volume of the book series shows R-calculus is a combination of one monotonic tableau proof system and one non-monotonic one. The R-calculus is a Gentzen-type deduction system which is non-monotonic, and is a concrete belief revision operator which is proved to satisfy the AGM postulates and the DP postulates. It discusses the algebraical and logical properties of tableau proof systems and R-calculi in many-valued logics.
This book offers a rich blend of theory and practice. It is suitable for students, researchers and practitioners in the field of logic. Also it is very useful for all those who are interested in data, digitization and correctness and consistency of information, in modal logics, non monotonic logics, decidable/undecidable logics, logic programming, description logics, default logics and semantic inheritance networks.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Big Data
- Mathematik | Informatik Mathematik Mathematik Allgemein Mathematische Logik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz
- Mathematik | Informatik EDV | Informatik Informatik Logik, formale Sprachen, Automaten
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
Weitere Infos & Material
1 Introduction 111.1 Belief revision . . . . . . . . . . . . . . . . . . . . . . . . . . . 111.2 R-calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131.3 Contents in the first-volume . . . . . . . . . . . . . . . . . . . 141.4 Contents in this volume . . . . . . . . . . . . . . . . . . . . . 171.5 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2 R-Calculus For Propositional Logic 242.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . 252.2 Monotonic tableau proof systems . . . . . . . . . . . . . . . . 262.2.1 Tableau proof system Tf . . . . . . . . . . . . . . . . 262.2.2 Tableau proof system Tt . . . . . . . . . . . . . . . . 292.3 Nonmonotonic tableau proof systems . . . . . . . . . . . . . . 312.3.1 Tableau proof system St . . . . . . . . . . . . . . . . . 322.3.2 Tableau proof system Sf . . . . . . . . . . . . . . . . . 342.4 R-calculi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352.4.1 R-calculus Rt . . . . . . . . . . . . . . . . . . . . . . . 362.4.2 R-calculus Rf . . . . . . . . . . . . . . . . . . . . . . . 402.5 Projecting R-calculi to tableau proof systems . . . . . . . . . 412.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3 R-Calculus For L3-Valued Propositional Logic 453.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . 463.2 Monotonic tableau proof systems . . . . . . . . . . . . . . . . 493.2.1 Tableau proof system Tt . . . . . . . . . . . . . . . . 493.2.2 Tableau proof system Tm . . . . . . . . . . . . . . . . 503.2.3 Tableau proof system Tf . . . . . . . . . . . . . . . . 513.3 Nonmonotonic tableau proof systems . . . . . . . . . . . . . . 523.3.1 Tableau proof system St . . . . . . . . . . . . . . . . . 543.3.2 Tableau proof system Sm . . . . . . . . . . . . . . . . . 553.3.3 Tableau proof system Sf . . . . . . . . . . . . . . . . . 553.4 R-calculi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563.4.1 R-calculus Rt . . . . . . . . . . . . . . . . . . . . . . . 573.4.2 R-calculus Rm . . . . . . . . . . . . . . . . . . . . . . . 603.4.3 R-calculus Rf . . . . . . . . . . . . . . . . . . . . . . . 633.5 Satisfiability and unsatisfiability . . . . . . . . . . . . . . . . 653.5.1 t-satisfiability and t-unsatisfiability . . . . . . . . . . 653.5.2 m-satisfiability and m-unsatisfiability . . . . . . . . . . 673.5.3 f-satisfiability and f-unsatisfiability . . . . . . . . . . 683.6 Projecting R-calculi to tableau proof systems . . . . . . . . . 703.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4 R-Calculus For L3-Valued PL,II 754.1 Monotonic tableau proof systems . . . . . . . . . . . . . . . . 754.1.1 Tableau proof system Tt . . . . . . . . . . . . . . . . 76 4.1.2 Tableau proof system Tm . . . . . . . . . . . . . . . . 774.1.3 Tableau proof system Tf . . . . . . . . . . . . . . . . 784.2 Nonmonotonic tableau proof systems . . . . . . . . . . . . . . 794.2.1 Tableau proof system St . . . . . . . . . . . . . . . . . 794.2.2 Tableau proof system Sm . . . . . . . . . . . . . . . . . 804.2.3 Tableau proof system Sf . . . . . . . . . . . . . . . . . 814.3 R-calculi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 824.3.1 R-calculus Rt . . . . . . . . . . . . . . . . . . . . . . . 824.3.2 R-calculus Rm . . . . . . . . . . . . . . . . . . . . . . . 854.3.3 R-calculus Rf . . . . . . . . . . . . . . . . . . . . . . . 874.4 Validity and invalidity . . . . . . . . . . . . . . . . . . . . . . 904.4.1 t-invalidity and t-validity . . . . . . . . . . . . . . . . 904.4.2 m-invalidity and m-validity . . . . . . . . . . . . . . . . 924.4.3 f-invalidity and f-validity . . . . . . . . . . . . . . . . 944.5 Projecting R-calculi to tableau proof systems . . . . . . . . . 96
5 R-Calculus For B22-Valued PL 985.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . 1005.2 Monotonic tableau proof systems . . . . . . . . . . . . . . . . 1015.2.1 Tableau proof system Tt . . . . . . . . . . . . . . . . 1035.2.2 Tableau proof system Ttop . . . . . . . . . . . . . . . . 1045.2.3 Tableau proof system T?. . . . . . . . . . . . . . . . 1055.2.4 Tableau proof system Tf . . . . . . . . . . . . . . . . 1075.3 Nonmonotonic tableau proof systems . . . . . . . . . . . . . . 1085.3.1 Tableau proof system St . . . . . . . . . . . . . . . . . 1105.3.2 Tableau proof system Stop . . . . . . . . . . . . . . . . 1125.3.3 Tableau proof system S?. . . . . . . . . . . . . . . . 1135.3.4 Tableau proof system Sf . . . . . . . . . . . . . . . . . 1145.4 R-calculi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1165.4.1 R-calculus Rt . . . . . . . . . . . . . . . . . . . . . . . 1175.4.2 R-calculus Rtop . . . . . . . . . . . . . . . . . . . . . . 1215.4.3 R-calculus R? . . . . . . . . . . . . . . . . . . . . . . 1255.4.4 R-calculus Rf . . . . . . . . . . . . . . . . . . . . . . . 1285.5 Projecting R-calculi to tableau proof systems . . . . . . . . . 1325.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6 R-Calculus For B22-Valued PL,II 1386.1 Monotonic tableau proof systems . . . . . . . . . . . . . . . . 1406.1.1 Tableau proof system Tt top . . . . . . . . . . . . . . . . 142 6.1.2 Tableau proof system Tt? . . . . . . . . . . . . . . . . 143 6.2 Tableau proof systems . . . . . . . . . . . . . . . . . . . . . . 1456.2.1 Tableau proof system Tt top . . . . . . . . . . . . . . . . 1466.2.2 Tableau proof system Tt? . . . . . . . . . . . . . . . 1486.3 Nonmonotonic tableau proof systems . . . . . . . . . . . . . . 1496.3.1 Tableau proof system St top . . . . . . . . . . . . . . . . 1506.3.2 Tableau proof system St?. . . . . . . . . . . . . . . . 1516.3.3 Tableau proof system St top . . . . . . . . . . . . . . . . 1526.3.4 Tableau proof system St?. . . . . . . . . . . . . . . . 1536.4 R-calculi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1556.4.1 R-calculus Rt top . . . . . . . . . . . . . . . . . . . . . . 1556.4.2 R-calculus Rt?. . . . . . . . . . . . . . . . . . . . . . 1576.4.3 R-calculus Rf top . . . . . . . . . . . . . . . . . . . . . . 1596.4.4 R-calculus Rf.?. . . . . . . . . . . . . . . . . . . . . 1616.5 Projecting R-calculi to tableau proof systems . . . . . . . . . 1636.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7 Complementary R-Calculus For PL 1687.1 Co-R-calculi in propositional logic . . . . . . . . . . . . . . . 1697.1.1 Co-R-calculus Ut . . . . . . . . . . . . . . . . . . . . . 1697.1.2 Co-R-calculus Uf . . . . . . . . . . . . . . . . . . . . . 1717.2 Co-R-calculi in L3-valued PL . . . . . . . . . . . . . . . . . . 1737.2.1 Co-R-calculus Ut . . . . . . . . . . . . . . . . . . . . . 1737.2.2 Co-R-calculus Um . . . . . . . . . . . . . . . . . . . . . 1767.2.3 Co-R-calculus Uf . . . . . . . . . . . . . . . . . . . . . 1797.3 Co-R-calculi in B22-valued propositional logic . . . . . . . . . 1817.3.1 Co-R-calculus Ut . . . . . . . . . . . . . . . . . . . . . 1827.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
8 Multisequents and Hypersequents 1888.1 Tableau proof systems . . . . . . . . . . . . . . . . . . . . . . 1898.1.1 Tableau-typed proof system Tt . . . . . . . . . . . . . 1898.1.2 Tableau proof system Tt . . . . . . . . . . . . . . . . 1908.2 Sequents in L3-valued propositional logic . . . . . . . . . . . . 1928.2.1 Gentzen deduction system for ?=>?. . . . . . . . . 1938.2.2 Gentzen deduction system for T=> ?. . . . . . . . . 1958.2.3 Gentzen deduction system for G=> ?. . . . . . . . . . 1968.3 Multisequents in L3-valued PL . . . . . . . . . . . . . . . . . 1978.3.1 Multisequents . . . . . . . . . . . . . . . . . . . . . . . 199 8.3.2 Co-multisequents . . . . . . . . . . . . . . . . . . . . . 2028.4 Hypersequents in L3-valued PL . . . . . . . . . . . . . . . . . 2068.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
9 Product of Two R-Calculi 2169.1 Tableau proof systems in modalized PL . . . . . . . . . . . . 2179.1.1 Monotonic tableau proof systems . . . . . . . . . . . . 2179.1.2 Nonmonotonic tableau proof systems . . . . . . . . . . 2189.2 Product of B2-valued PLs . . . . . . . . . . . . . . . . . . . . 2199.2.1 Tableau proof system Pt4 . . . . . . . . . . . . . . . . 2229.2.2 Tableau proof system P4t . . . . . . . . . . . . . . . . 2249.2.3 Tableau proof system Qt . . . . . . . . . . . . . . . . 2289.3 Product of two R-calculi . . . . . . . . . . . . . . . . . . . . . 2319.3.1 R-calculi Rt2 and Rf2 . . . . . . . . . . . . . . . . . . . 2319.3.2 R-calculus Ut4 . . . . . . . . . . . . . . . . . . . . . . . 2339.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
10 Sum of Two R-Calculi 24410.1 The sum with one common element . . . . . . . . . . . . . . 24510.1.1 B2[f; m] ? B2[m; t] . . . . . . . . . . . . . . . . . . . . 24510.1.2 Operators on tableau proof systems . . . . . . . . . . 246 10.1.3 Sum of tableau proof systems . . . . . . . . . . . . . . 248 10.1.4 R-calculi . . . . . . . . . . . . . . . . . . . . . . . . . . 251 10.1.5 R-calculi in PL . . . . . . . . . . . . . . . . . . . . . . 251 10.1.6 R-calculi in L3-valued PL . . . . . . . . . . . . . . . . 253 10.2 The sum without common elements . . . . . . . . . . . . . . 25610.2.1 L4-valued PL . . . . . . . . . . . . . . . . . . . . . . . 25610.2.2 Equivalences . . . . . . . . . . . . . . . . . . . . . . . 25710.2.3 Tableau proof system Tt4 . . . . . . . . . . . . . . . . 25910.2.4 Tableau proof system Ttop4 . . . . . . . . . . . . . . . . 26010.2.5 Tableau proof system T?4. . . . . . . . . . . . . . . . 26210.2.6 Tableau proof system Tf4 . . . . . . . . . . . . . . . . 26310.2.7 Sum of tableau proof systems: Tt4=~2 (Tt2) ? Tt2. . 26410.2.8 Sum of tableau proof systems: T4t= T2?? T2t. . . . . 26610.2.9 Sum of tableau proof systems: St4= S?2? St2 . . . . . 26810.2.10 Sum of R-calculi: Rt4= R?2? Rt2. . . . . . . . . . . . 26910.3 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273




