Buch, Englisch, 353 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 782 g
ISBN: 978-981-97-4031-4
Verlag: Springer Nature Singapore
This book introduces probabilistic modelling and explores its role in solving a broad spectrum of engineering problems that arise in Information Technology (IT). Divided into three parts, it begins by laying the foundation of basic probability concepts such as sample space, events, conditional probability, independence, total probability law and random variables. The second part delves into more advanced topics including random processes and key principles like Maximum A Posteriori (MAP) estimation, the law of large numbers and the central limit theorem. The last part applies these principles to various IT domains like communication, social networks, speech recognition, and machine learning, emphasizing the practical aspect of probability through real-world examples, case studies, and Python coding exercises.
A notable feature of this book is its narrative style, seamlessly weaving together probability theories with both classical and contemporary IT applications. Each concept is reinforced with tightly-coupled exercise sets, and the associated fundamentals are explored mostly from first principles. Furthermore, it includes programming implementations of illustrative examples and algorithms, complemented by a brief Python tutorial.
Departing from traditional organization, the book adopts a lecture-notes format, presenting interconnected themes and storylines. Primarily tailored for sophomore-level undergraduates, it also suits junior and senior-level courses. While readers benefit from mathematical maturity and programming exposure, supplementary materials and exercise problems aid understanding. Part III serves to inspire and provide insights for students and professionals alike, underscoring the pragmatic relevance of probabilistic concepts in IT.
Zielgruppe
Upper undergraduate
Autoren/Hrsg.
Fachgebiete
- Sozialwissenschaften Medien- und Kommunikationswissenschaften Kommunikationswissenschaften Digitale Medien, Internet, Telekommunikation
- Mathematik | Informatik Mathematik Stochastik
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Mathematik | Informatik EDV | Informatik Informatik Mathematik für Informatiker
Weitere Infos & Material
Preface.- Acknowledgements.- Part I. Basic concepts of probability.- Chapter 1. Overview of the book.- Chapter 2. Sample space and events.- Chapter 3. Monty Hall problem and Python implementation.- Problem Set 1.- Chapter 4. Conditional probability and total probability law.- Chapter 5. Independence.- Chapter 6. Coupon collector problem and Python implementation.- Problem Set 2.- Chapter 7. Random variables.- Chapter 8. Expectation.- Chapter 9. BitTorrent and Python implementation.- Chapter 10.Variance and Chebyshev’s inequality.- Problem Set 3.- Chapter 11.Continuous random variables.- Chapter 12. Gaussian random variables.- Problem Set 4.- Part II. Introductory random processes and key principles.- Chapter 13. Introduction to random processes.- Chapter 14. Maximum A Posteriori (MAP) principle.- Chapter 15. MAP: Multiple observations.- Chapter 16. MAP: Performance analysis.- Chapter 17. MAP: Cancer prediciton and Python implementation.- Problem Set 5.- Chapter 18. Maximum Likelihood Estimation (MLE).- Chapter 19. MLE: Law of large numbers.- Chapter 20. MLE: Gaussian distribution.- Chapter 21. MLE: Gaussian distribution estimation and Python implementation.- Chapter 22. Central limit theorem.- Problem Set 6.- Part III. Information Technology Applications.- Chapter 23. Communication: Probabilistic modeling.- Chapter 24. Communication: MAP principle.- Chapter 25. Communication: MAP under multiple observations.- Chapter 26. Communication: Repetition coding and Python implementation.- Problem Set 7.- Chapter 27. Social networks: Probabilistic modeling.- Chapter 28. Social networks: ML principle.- Chapter 29. Social networks: Community detecition and Python implementation.- Problem Set 8.- Chapter 30. Speech recognition: Probabilistic modeling.- Chapter 31. Speech recognition: MAP principle.- Chapter 32. Speech recognition: Viterbi algorithm.- Chapter 33. Speech recognition: Python implementation.- Problem Set 9.- Appendix A: Python basics.- Bibliography.- Index.