Suggett / Borowitzka / Prásil | Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications | E-Book | www2.sack.de
E-Book

E-Book, Englisch, Band 4, 326 Seiten

Reihe: Developments in Applied Phycology

Suggett / Borowitzka / Prásil Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications


1. Auflage 2010
ISBN: 978-90-481-9268-7
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 4, 326 Seiten

Reihe: Developments in Applied Phycology

ISBN: 978-90-481-9268-7
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark



Measurements of variable chlorophyll fluorescence have revolutionised global research of photosynthetic bacteria, algae and plants and in turn assessment of the status of aquatic ecosystems, a success that has partly been facilitated by the widespread commercialisation of a suite of chlorophyll fluorometers designed for almost every application in lakes, rivers and oceans. Numerous publications have been produced as researchers and assessors have simultaneously sought to optimise protocols and practices for key organisms or water bodies; however, such parallel efforts have led to difficulties in reconciling processes and patterns across the aquatic sciences. This book follows on from the first international conference on “chlorophyll fluorescence in the aquatic sciences” (AQUAFLUO 2007): to bridge the gaps between the concept, measurement and application of chlorophyll fluorescence through the synthesis and integration of current knowledge from leading researchers and assessors as well as instrument manufacturers.

Suggett / Borowitzka / Prásil Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications jetzt bestellen!

Weitere Infos & Material


1;Preface;5
1.1;References;11
2;Contributors;15
3;Contents;13
4;Chapter 1: Chlorophyll Fluorescence Terminology: An Introduction;19
4.1;1 Introduction;19
4.2;2 Light and Absorption;19
4.3;3 Fluorescence;22
4.3.1;3.1 Fast Phase (O-J-I-P);23
4.3.1.1;3.1.1 Additional Features;24
4.3.2;3.2 Slow Phase (S-M-T);25
4.3.3;3.3 The Saturation Pulse Method;26
4.3.4;3.4 Quantum Yield for PSII (FPSII);28
4.3.5;3.5 Quenching;29
4.4;4 Conclusion;31
4.5;References;31
5;Chapter 2: In Situ Measurement of Variable Fluorescence Transients;36
5.1;1 Introduction;36
5.2;2 Phytoplankton Variable Fluorescence In Situ;37
5.2.1;2.1 Dynamical Protocols for Stimulating Variable Fluorescence;37
5.2.2;2.2 The Practical Relevance of the Single-turnover Time Scale In Situ;38
5.2.3;2.3 Issues Related to the Marine Light Field;41
5.2.4;2.4 Apparent Effects Resulting from Assemblage Composition;43
5.2.5;2.5 Effects Due to Optical Properties of Natural Waters;44
5.3;3 Conclusions and Future Directions;45
5.4;References;45
6;Chapter 3: Overview of Fluorescence Protocols: Theory, Basic Concepts, and Practice;48
6.1;1 Introduction;48
6.2;2 Theoretical Background;49
6.2.1;2.1 The Fluorescing Properties of Chlorophyll a;49
6.2.2;2.2 Source of Fluorescence in Seawater and Mathematical Description of Fluorescence Emission;50
6.2.3;2.3 The Functional Organization of the Photosynthetic Apparatus;53
6.2.3.1;2.3.1 Photosystem II;53
6.2.3.2;2.3.2 The Photosynthetic Chain;55
6.2.4;2.4 Adaptation, Acclimation, Regulation of Phytoplankton;56
6.2.5;2.5 Fates of Absorbed Photons Within PSII;56
6.2.6;2.6 A Simple Model of In Vivo Processes In PSII At Room Temperature;58
6.2.6.1;2.6.1 Quantum Yield of Fluorescence;58
6.2.7;2.7 Charge Separation at PSII;59
6.2.8;2.8 Photochemical Quenching of Fluorescence;59
6.2.9;2.9 Non-photochemical Quenching of Fluorescence;60
6.2.9.1;2.9.1 Energy-dependent Non-photochemical Quenching;60
6.2.9.2;2.9.2 Quenching Due to State Transitions;61
6.2.9.3;2.9.3 Quenching Linked to Inhibition;61
6.2.9.4;2.9.4 Reaction Center Quenching;61
6.2.10;2.10 Transient Changes in Fluorescence;61
6.3;3 Protocols for Measurement of In Vivo Phytoplankton Fluorescence, and the Use of Chl a Fluorescence to Study Phytoplankton;62
6.3.1;3.1 The Determination of Biomass In Vivo;62
6.3.1.1;3.1.1 Basic Principle;63
6.3.1.2;3.1.2 Instruments and Protocols;63
6.3.1.3;3.1.3 Validity of the Underlying Assumptions;64
6.3.1.4;3.1.4 Examples;65
6.3.2;3.2 Spectrofluorometry;67
6.3.2.1;3.2.1 Basic Principle;67
6.3.2.2;3.2.2 Instruments and Protocols;68
6.3.2.3;3.2.3 Validity of the Underlying Assumptions;68
6.3.2.4;3.2.4 Examples;69
6.3.3;3.3 Sun-induced Chlorophyll Fluorescence;69
6.3.3.1;3.3.1 Validity of the Underlying Assumptions;71
6.3.3.2;3.3.2 Examples;72
6.3.4;3.4 Flow Cytometry;73
6.3.5;3.5 Laser Excitation and LIDAR Fluorometry;73
6.3.6;3.6 Variable Fluorescence;74
6.3.6.1;3.6.1 Basic Principle;74
6.3.6.2;3.6.2 Instruments and Protocols;76
6.3.6.2.1;Use of DCMU;76
6.3.6.2.2;Pulse Amplitude Modulation;76
6.3.6.2.3;Pump-and-Probe;76
6.3.6.2.4;Fast Repetition Rate;77
6.3.6.3;3.6.3 Validity of the Underlying Assumptions;77
6.3.6.4;3.6.4 Examples;79
6.4;4 The Use of Chlorophyll Fluorescence to Estimate Primary Production;81
6.4.1;4.1 Variable Fluorescence;81
6.4.1.1;4.1.1 If is Available (FRRF and Pump and Probe Protocol);81
6.4.1.2;4.1.2 When is not Available (PAM Protocol);83
6.4.2;4.2 Sun-induced Chlorophyll Fluorescence;83
6.5;5 Conclusion;84
6.6;6 List of Symbols;84
6.7;References;86
7;Chapter 4: Fluorescence as a Tool to Understand Changes in Photosynthetic Electron Flow Regulation;92
7.1;1 Introduction;92
7.2;2 Electron Usage in Photosynthesis;92
7.2.1;2.1 Alternative Electron Cycling (AEC);93
7.2.2;2.2 Electron Usage to Produce New Biomass;94
7.3;3 Effect of Light Stress on Fluorescence Signatures and their Interpretation;95
7.4;4 Use of Chemicals for the Differentiation of Photosynthetic Processes;99
7.4.1;4.1 Inhibitors of Linear Electron Transport;99
7.4.2;4.2 Inhibitors of Cyclic Electron Transport;101
7.4.3;4.3 Inhibitors of Alternative Electron Cycling (AEC);101
7.4.4;4.4 Inhibitors of CO2 Fixation;102
7.4.5;4.5 Electron Transport Uncouplers;102
7.4.6;4.6 Electron Acceptors;103
7.5;References;103
8;Chapter 5: Microscopic Measurements of the Chlorophyll a Fluorescence Kinetics;107
8.1;1 Introduction;107
8.2;2 Fluorescence Techniques in High Resolution;109
8.3;3 Applications of Fluorescence Kinetic Microscopy;113
8.4;References;116
9;Chapter 6: Estimating Aquatic Productivity from Active Fluorescence Measurements;118
9.1;1 Fluorescence as a Probe for Photosynthesis;118
9.2;2 Overview of the Theory of Calculating ETRPSII;119
9.2.1;2.1 Measuring fPSII¢ and Calculating ETR;121
9.2.2;2.2 Examining Changes to the Quantum Yield Under Actinic Light;122
9.3;3 Light Absorption by Photosystem II;123
9.3.1;3.1 Bio-Physical Measures of PSII Absorption and Calculationof Chlorophyll-Specific ETR;123
9.3.2;3.2 Bio-Optical Based Determinationsof PSII Absorption;126
9.4;4 Reconciling Active Fluorescence-based Estimates of Productivity with Gas Exchange;128
9.4.1;4.1 Practical Constraints in Comparing Fluorescence- and Gas Exchange-Based Productivity Measurements;131
9.4.2;4.2 Are ETRs Indicative of Gross O2 Evolution?;135
9.4.3;4.3 Estimating Net O2 Production and C-Fixation from ETRs;136
9.4.4;4.4 Reconciliation of ETRPSII : O2 : CO2 Estimates;137
9.5;5 Future Application of ETRs to Primary Productivity Studies;137
9.6;References;138
10;Chapter 7: Taxonomic Discrimination of Phytoplankton by Spectral Fluorescence;143
10.1;1 Introduction;143
10.2;2 The Principles of Taxonomy by Spectral Fluorescence;144
10.2.1;2.1 Energy Transfer Between Pigments;145
10.2.2;2.2 Taxonomic Differences in Fluorescence Spectra;146
10.2.3;2.3 Taxonomic Discrimination by Spectral Fluorescence;148
10.3;3 Variation in Chlorophyll-specific Fluorescence, FChl;152
10.3.1;3.1 Inter-Specific Variability;152
10.3.2;3.2 Intra-specific Variability;154
10.3.3;3.3 Short-Term Quenching;160
10.4;4 Optical Indices and Application of the SFS Approach in the Field;163
10.4.1;4.1 Bias in SFS by Background Absorption and Scattering;165
10.4.2;4.2 Quenching In Situ and Taxonomic Assessment;167
10.5;5 A Field Test of the SFS Approach;170
10.6;6 Conclusion;178
10.7;References;178
11;Chapter 8: Flow Cytometry in Phytoplankton Research;184
11.1;1 Introduction;184
11.2;2 Background and Historical Perspective;184
11.3;3 Select Research Applications;186
11.3.1;3.1 Picophytoplankton Community Structure and Dynamics;186
11.3.2;3.2 Time Resolved Pulses for Physiological and Ecological Studies;187
11.3.3;3.3 Cell Sorting for Physiology and Diversity;188
11.3.4;3.4 Interpretation of Optical Variability in the Ocean;190
11.4;4 Emerging Approaches and Applications;191
11.5;References;193
12;Chapter 9: The Use of the Fluorescence Signal in Studies of Seagrasses and Macroalgae;199
12.1;1 Introduction;199
12.2;2 Major Achievements Using the Chlorophyll a Fluorescence Signal in Seagrass and Macroalgae Studies;201
12.2.1;2.1 Quenching Analysis;204
12.2.2;2.2 Analysis of Quenching Components: Use of Chemicals;205
12.3;3 Protocols Used, Limitations and Specific Modifications for Aquatic Macrophytes;207
12.3.1;3.1 Determination of the Variation in Fv/Fm and DF/Fm¢;207
12.3.2;3.2 Limitation of the Use of Rapid Light Curves (RLC);208
12.3.3;3.3 The Importance of Photosynthesis Induction;209
12.3.4;3.4 Determination of Absorptance, PSII Effective Absorption Cross-Section and the Number of Reaction Centers;210
12.3.5;3.5 Use of Relative ETR Values (rETR);212
12.3.6;3.6 The Use of Electron Transport Rates Values (ETR) as Descriptors of Gross Photosynthesis (GPS);213
12.4;4 Final Comments;216
12.5;References;216
13;Chapter 10: Chlorophyll Fluorescence in Reef Building Corals;221
13.1;1 Introduction;221
13.2;2 Natural Patterns of Fluorescence;222
13.2.1;2.1 Multiple and Single Turnover Instrumentation;223
13.2.2;2.2 Non-Photochemical Quenching;224
13.3;3 Detecting Stress;226
13.4;4 Protocols and Pitfalls;228
13.4.1;4.1 Dark Acclimation, Sample Area and Related Matters;228
13.4.2;4.2 Electron Transport Rate;229
13.5;5 Conclusion;231
13.6;References;231
14;Chapter 11: Assessing Nutrient Status of Microalgae Using Chlorophyll a Fluorescence;235
14.1;1 Introduction;235
14.2;2 Defining Nutrient Limitation;236
14.3;3 The Effects of Nutrient Limitation on Phytoplankton;236
14.3.1;3.1 Nitrogen;236
14.3.2;3.2 Phosphorus;236
14.3.3;3.3 Iron;237
14.4;4 Measuring Nutrient Limitation;238
14.4.1;4.1 Nutrient Enrichment Bioassays;238
14.4.2;4.2 Chlorophyll a Fluorescence as a Measure of Nutrient Stress;239
14.4.3;4.3 Natural Population Enrichments and Chlorophyll a Fluorescence;239
14.5;5 NIFTS;240
14.5.1;5.1 What is a NIFT?;240
14.5.2;5.2 How to Measure NIFTs;240
14.5.3;5.3 The Characteristics of the NIFT Response are Dependent on the Limiting Nutrient;241
14.5.4;5.4 NIFT Responses of Different Taxa;242
14.5.5;5.5 Mechanisms Behind NIFTs;242
14.6;6 Conclusion;244
14.7;References;244
15;Chapter 12: The Application of Variable Chlorophyll Fluorescence to Microphytobenthic Biofilms;248
15.1;1 Introduction to Benthic Biofilms;248
15.2;2 The Effects of Subsurface Signal;249
15.2.1;2.1 Microphytobenthic Biofilms on Soft Sediments;249
15.2.2;2.2 Stromatolites – the effect of “layered” biofilms;252
15.2.3;2.3 Deconvolution of Depth Integrated Signals;253
15.3;3 Down Regulation Through Non-photochemical Quenching;254
15.3.1;3.1 NPQ and the Xanthophyll Cycle in Diatoms;254
15.3.2;3.2 NPQ in the Dark;257
15.4;4 The Quantification of the Microalgal Biomass Using Fluorescence;258
15.5;5 Calculation of Electron Transport Rate: ETR v rETR;259
15.5.1;5.1 Multiple and Single Turnover Methods;259
15.5.2;5.2 The MT-method;259
15.5.3;5.3 The ST-method;260
15.5.4;5.4 Assumptions and Uncertainties;261
15.5.5;5.5 Calculation of ETR in Microphytobenthos Studies;262
15.6;6 Light Response Curves;263
15.6.1;6.1 A Brief Overview of Methodology;263
15.6.2;6.2 Steady State Light Curves;264
15.6.3;6.3 Rapid Light Curves;265
15.6.4;6.4 Non-sequential Light Curves;268
15.6.5;6.5 Light Curves Summary;268
15.7;7 Comparison of Fluorescence with Other Methodologies;269
15.8;8 General Summary;281
15.9;References;281
16;Chapter 13: Chlorophyll Fluorescence Applications in Microalgal Mass Cultures;287
16.1;1 Preface;287
16.2;2 Historical Overview of Using Chl Fluorescence in Microalgal Mass Cultures;287
16.3;3 Microalgae Grown for Commercial Purposes and Cultivation Systems;288
16.4;4 Principles of Microalgae Mass Culturing;290
16.4.1;4.1 Culture Maintenance;291
16.5;5 Interpretation of Chl Fluorescence Parameters in MicroalgaeMass Cultures;291
16.6;6 Chlorophyll Fluorescence Monitoring in Microalgal Mass Cultures;295
16.7;7 Light Adaptation – Non-photochemical Fluorescence Quenching;298
16.8;8 Major Achievements in Microalgal Mass Culture Monitoring;299
16.9;9 Concluding Remarks;299
16.10;References;300
17;Chapter 14: Delayed Fluorescence;303
17.1;1 Introduction;303
17.2;2 Historical Overview;303
17.3;3 Basic Characteristics of Delayed Fluorescence;304
17.3.1;3.1 Delayed Fluorescence Decay Kinetics and Intensity;304
17.3.2;3.2 Physiology;306
17.3.2.1;3.2.1 Temperature and Illumination Intensity Dependance;306
17.3.2.2;3.2.2 Influence of Toxins;309
17.3.2.3;3.2.3 Nutrients;309
17.3.3;3.3 Delayed Fluorescence Excitation Spectroscopy;312
17.3.4;3.4 Photosynthetic Activity Index (PhAI);313
17.3.5;3.5 Delayed Fluorescence Visualisation;313
17.4;4 Delayed Fluorescence Applications;313
17.4.1;4.1 Description of the Instrument: What is Needed;313
17.4.2;4.2 Toxicity Tests;314
17.4.3;4.3 Primary Production;315
17.4.4;4.4 Delayed Fluorescence Excitation Spectroscopy;315
17.5;References;317
18;Chapter 15: The Study of Phytoplankton Photosynthesis by Photoacoustics;320
18.1;1 Introduction;320
18.2;2 The Photoacoustic Method;320
18.3;3 Efficiency of Photosynthesis and Photosynthesis Versus Energy Relationship;321
18.4;4 The Effect of Nutrient Limitation on Photosynthesis;322
18.5;5 The Effect of Lead Poisoning on Photosynthesis;322
18.6;6 Conclusions;323
18.7;References;323
19;Index;325



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.