E-Book, Englisch, Band 4, 326 Seiten
Suggett / Borowitzka / Prásil Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications
1. Auflage 2010
ISBN: 978-90-481-9268-7
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 4, 326 Seiten
Reihe: Developments in Applied Phycology
ISBN: 978-90-481-9268-7
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;5
1.1;References;11
2;Contributors;15
3;Contents;13
4;Chapter 1: Chlorophyll Fluorescence Terminology: An Introduction;19
4.1;1 Introduction;19
4.2;2 Light and Absorption;19
4.3;3 Fluorescence;22
4.3.1;3.1 Fast Phase (O-J-I-P);23
4.3.1.1;3.1.1 Additional Features;24
4.3.2;3.2 Slow Phase (S-M-T);25
4.3.3;3.3 The Saturation Pulse Method;26
4.3.4;3.4 Quantum Yield for PSII (FPSII);28
4.3.5;3.5 Quenching;29
4.4;4 Conclusion;31
4.5;References;31
5;Chapter 2: In Situ Measurement of Variable Fluorescence Transients;36
5.1;1 Introduction;36
5.2;2 Phytoplankton Variable Fluorescence In Situ;37
5.2.1;2.1 Dynamical Protocols for Stimulating Variable Fluorescence;37
5.2.2;2.2 The Practical Relevance of the Single-turnover Time Scale In Situ;38
5.2.3;2.3 Issues Related to the Marine Light Field;41
5.2.4;2.4 Apparent Effects Resulting from Assemblage Composition;43
5.2.5;2.5 Effects Due to Optical Properties of Natural Waters;44
5.3;3 Conclusions and Future Directions;45
5.4;References;45
6;Chapter 3: Overview of Fluorescence Protocols: Theory, Basic Concepts, and Practice;48
6.1;1 Introduction;48
6.2;2 Theoretical Background;49
6.2.1;2.1 The Fluorescing Properties of Chlorophyll a;49
6.2.2;2.2 Source of Fluorescence in Seawater and Mathematical Description of Fluorescence Emission;50
6.2.3;2.3 The Functional Organization of the Photosynthetic Apparatus;53
6.2.3.1;2.3.1 Photosystem II;53
6.2.3.2;2.3.2 The Photosynthetic Chain;55
6.2.4;2.4 Adaptation, Acclimation, Regulation of Phytoplankton;56
6.2.5;2.5 Fates of Absorbed Photons Within PSII;56
6.2.6;2.6 A Simple Model of In Vivo Processes In PSII At Room Temperature;58
6.2.6.1;2.6.1 Quantum Yield of Fluorescence;58
6.2.7;2.7 Charge Separation at PSII;59
6.2.8;2.8 Photochemical Quenching of Fluorescence;59
6.2.9;2.9 Non-photochemical Quenching of Fluorescence;60
6.2.9.1;2.9.1 Energy-dependent Non-photochemical Quenching;60
6.2.9.2;2.9.2 Quenching Due to State Transitions;61
6.2.9.3;2.9.3 Quenching Linked to Inhibition;61
6.2.9.4;2.9.4 Reaction Center Quenching;61
6.2.10;2.10 Transient Changes in Fluorescence;61
6.3;3 Protocols for Measurement of In Vivo Phytoplankton Fluorescence, and the Use of Chl a Fluorescence to Study Phytoplankton;62
6.3.1;3.1 The Determination of Biomass In Vivo;62
6.3.1.1;3.1.1 Basic Principle;63
6.3.1.2;3.1.2 Instruments and Protocols;63
6.3.1.3;3.1.3 Validity of the Underlying Assumptions;64
6.3.1.4;3.1.4 Examples;65
6.3.2;3.2 Spectrofluorometry;67
6.3.2.1;3.2.1 Basic Principle;67
6.3.2.2;3.2.2 Instruments and Protocols;68
6.3.2.3;3.2.3 Validity of the Underlying Assumptions;68
6.3.2.4;3.2.4 Examples;69
6.3.3;3.3 Sun-induced Chlorophyll Fluorescence;69
6.3.3.1;3.3.1 Validity of the Underlying Assumptions;71
6.3.3.2;3.3.2 Examples;72
6.3.4;3.4 Flow Cytometry;73
6.3.5;3.5 Laser Excitation and LIDAR Fluorometry;73
6.3.6;3.6 Variable Fluorescence;74
6.3.6.1;3.6.1 Basic Principle;74
6.3.6.2;3.6.2 Instruments and Protocols;76
6.3.6.2.1;Use of DCMU;76
6.3.6.2.2;Pulse Amplitude Modulation;76
6.3.6.2.3;Pump-and-Probe;76
6.3.6.2.4;Fast Repetition Rate;77
6.3.6.3;3.6.3 Validity of the Underlying Assumptions;77
6.3.6.4;3.6.4 Examples;79
6.4;4 The Use of Chlorophyll Fluorescence to Estimate Primary Production;81
6.4.1;4.1 Variable Fluorescence;81
6.4.1.1;4.1.1 If is Available (FRRF and Pump and Probe Protocol);81
6.4.1.2;4.1.2 When is not Available (PAM Protocol);83
6.4.2;4.2 Sun-induced Chlorophyll Fluorescence;83
6.5;5 Conclusion;84
6.6;6 List of Symbols;84
6.7;References;86
7;Chapter 4: Fluorescence as a Tool to Understand Changes in Photosynthetic Electron Flow Regulation;92
7.1;1 Introduction;92
7.2;2 Electron Usage in Photosynthesis;92
7.2.1;2.1 Alternative Electron Cycling (AEC);93
7.2.2;2.2 Electron Usage to Produce New Biomass;94
7.3;3 Effect of Light Stress on Fluorescence Signatures and their Interpretation;95
7.4;4 Use of Chemicals for the Differentiation of Photosynthetic Processes;99
7.4.1;4.1 Inhibitors of Linear Electron Transport;99
7.4.2;4.2 Inhibitors of Cyclic Electron Transport;101
7.4.3;4.3 Inhibitors of Alternative Electron Cycling (AEC);101
7.4.4;4.4 Inhibitors of CO2 Fixation;102
7.4.5;4.5 Electron Transport Uncouplers;102
7.4.6;4.6 Electron Acceptors;103
7.5;References;103
8;Chapter 5: Microscopic Measurements of the Chlorophyll a Fluorescence Kinetics;107
8.1;1 Introduction;107
8.2;2 Fluorescence Techniques in High Resolution;109
8.3;3 Applications of Fluorescence Kinetic Microscopy;113
8.4;References;116
9;Chapter 6: Estimating Aquatic Productivity from Active Fluorescence Measurements;118
9.1;1 Fluorescence as a Probe for Photosynthesis;118
9.2;2 Overview of the Theory of Calculating ETRPSII;119
9.2.1;2.1 Measuring fPSII¢ and Calculating ETR;121
9.2.2;2.2 Examining Changes to the Quantum Yield Under Actinic Light;122
9.3;3 Light Absorption by Photosystem II;123
9.3.1;3.1 Bio-Physical Measures of PSII Absorption and Calculationof Chlorophyll-Specific ETR;123
9.3.2;3.2 Bio-Optical Based Determinationsof PSII Absorption;126
9.4;4 Reconciling Active Fluorescence-based Estimates of Productivity with Gas Exchange;128
9.4.1;4.1 Practical Constraints in Comparing Fluorescence- and Gas Exchange-Based Productivity Measurements;131
9.4.2;4.2 Are ETRs Indicative of Gross O2 Evolution?;135
9.4.3;4.3 Estimating Net O2 Production and C-Fixation from ETRs;136
9.4.4;4.4 Reconciliation of ETRPSII : O2 : CO2 Estimates;137
9.5;5 Future Application of ETRs to Primary Productivity Studies;137
9.6;References;138
10;Chapter 7: Taxonomic Discrimination of Phytoplankton by Spectral Fluorescence;143
10.1;1 Introduction;143
10.2;2 The Principles of Taxonomy by Spectral Fluorescence;144
10.2.1;2.1 Energy Transfer Between Pigments;145
10.2.2;2.2 Taxonomic Differences in Fluorescence Spectra;146
10.2.3;2.3 Taxonomic Discrimination by Spectral Fluorescence;148
10.3;3 Variation in Chlorophyll-specific Fluorescence, FChl;152
10.3.1;3.1 Inter-Specific Variability;152
10.3.2;3.2 Intra-specific Variability;154
10.3.3;3.3 Short-Term Quenching;160
10.4;4 Optical Indices and Application of the SFS Approach in the Field;163
10.4.1;4.1 Bias in SFS by Background Absorption and Scattering;165
10.4.2;4.2 Quenching In Situ and Taxonomic Assessment;167
10.5;5 A Field Test of the SFS Approach;170
10.6;6 Conclusion;178
10.7;References;178
11;Chapter 8: Flow Cytometry in Phytoplankton Research;184
11.1;1 Introduction;184
11.2;2 Background and Historical Perspective;184
11.3;3 Select Research Applications;186
11.3.1;3.1 Picophytoplankton Community Structure and Dynamics;186
11.3.2;3.2 Time Resolved Pulses for Physiological and Ecological Studies;187
11.3.3;3.3 Cell Sorting for Physiology and Diversity;188
11.3.4;3.4 Interpretation of Optical Variability in the Ocean;190
11.4;4 Emerging Approaches and Applications;191
11.5;References;193
12;Chapter 9: The Use of the Fluorescence Signal in Studies of Seagrasses and Macroalgae;199
12.1;1 Introduction;199
12.2;2 Major Achievements Using the Chlorophyll a Fluorescence Signal in Seagrass and Macroalgae Studies;201
12.2.1;2.1 Quenching Analysis;204
12.2.2;2.2 Analysis of Quenching Components: Use of Chemicals;205
12.3;3 Protocols Used, Limitations and Specific Modifications for Aquatic Macrophytes;207
12.3.1;3.1 Determination of the Variation in Fv/Fm and DF/Fm¢;207
12.3.2;3.2 Limitation of the Use of Rapid Light Curves (RLC);208
12.3.3;3.3 The Importance of Photosynthesis Induction;209
12.3.4;3.4 Determination of Absorptance, PSII Effective Absorption Cross-Section and the Number of Reaction Centers;210
12.3.5;3.5 Use of Relative ETR Values (rETR);212
12.3.6;3.6 The Use of Electron Transport Rates Values (ETR) as Descriptors of Gross Photosynthesis (GPS);213
12.4;4 Final Comments;216
12.5;References;216
13;Chapter 10: Chlorophyll Fluorescence in Reef Building Corals;221
13.1;1 Introduction;221
13.2;2 Natural Patterns of Fluorescence;222
13.2.1;2.1 Multiple and Single Turnover Instrumentation;223
13.2.2;2.2 Non-Photochemical Quenching;224
13.3;3 Detecting Stress;226
13.4;4 Protocols and Pitfalls;228
13.4.1;4.1 Dark Acclimation, Sample Area and Related Matters;228
13.4.2;4.2 Electron Transport Rate;229
13.5;5 Conclusion;231
13.6;References;231
14;Chapter 11: Assessing Nutrient Status of Microalgae Using Chlorophyll a Fluorescence;235
14.1;1 Introduction;235
14.2;2 Defining Nutrient Limitation;236
14.3;3 The Effects of Nutrient Limitation on Phytoplankton;236
14.3.1;3.1 Nitrogen;236
14.3.2;3.2 Phosphorus;236
14.3.3;3.3 Iron;237
14.4;4 Measuring Nutrient Limitation;238
14.4.1;4.1 Nutrient Enrichment Bioassays;238
14.4.2;4.2 Chlorophyll a Fluorescence as a Measure of Nutrient Stress;239
14.4.3;4.3 Natural Population Enrichments and Chlorophyll a Fluorescence;239
14.5;5 NIFTS;240
14.5.1;5.1 What is a NIFT?;240
14.5.2;5.2 How to Measure NIFTs;240
14.5.3;5.3 The Characteristics of the NIFT Response are Dependent on the Limiting Nutrient;241
14.5.4;5.4 NIFT Responses of Different Taxa;242
14.5.5;5.5 Mechanisms Behind NIFTs;242
14.6;6 Conclusion;244
14.7;References;244
15;Chapter 12: The Application of Variable Chlorophyll Fluorescence to Microphytobenthic Biofilms;248
15.1;1 Introduction to Benthic Biofilms;248
15.2;2 The Effects of Subsurface Signal;249
15.2.1;2.1 Microphytobenthic Biofilms on Soft Sediments;249
15.2.2;2.2 Stromatolites – the effect of “layered” biofilms;252
15.2.3;2.3 Deconvolution of Depth Integrated Signals;253
15.3;3 Down Regulation Through Non-photochemical Quenching;254
15.3.1;3.1 NPQ and the Xanthophyll Cycle in Diatoms;254
15.3.2;3.2 NPQ in the Dark;257
15.4;4 The Quantification of the Microalgal Biomass Using Fluorescence;258
15.5;5 Calculation of Electron Transport Rate: ETR v rETR;259
15.5.1;5.1 Multiple and Single Turnover Methods;259
15.5.2;5.2 The MT-method;259
15.5.3;5.3 The ST-method;260
15.5.4;5.4 Assumptions and Uncertainties;261
15.5.5;5.5 Calculation of ETR in Microphytobenthos Studies;262
15.6;6 Light Response Curves;263
15.6.1;6.1 A Brief Overview of Methodology;263
15.6.2;6.2 Steady State Light Curves;264
15.6.3;6.3 Rapid Light Curves;265
15.6.4;6.4 Non-sequential Light Curves;268
15.6.5;6.5 Light Curves Summary;268
15.7;7 Comparison of Fluorescence with Other Methodologies;269
15.8;8 General Summary;281
15.9;References;281
16;Chapter 13: Chlorophyll Fluorescence Applications in Microalgal Mass Cultures;287
16.1;1 Preface;287
16.2;2 Historical Overview of Using Chl Fluorescence in Microalgal Mass Cultures;287
16.3;3 Microalgae Grown for Commercial Purposes and Cultivation Systems;288
16.4;4 Principles of Microalgae Mass Culturing;290
16.4.1;4.1 Culture Maintenance;291
16.5;5 Interpretation of Chl Fluorescence Parameters in MicroalgaeMass Cultures;291
16.6;6 Chlorophyll Fluorescence Monitoring in Microalgal Mass Cultures;295
16.7;7 Light Adaptation – Non-photochemical Fluorescence Quenching;298
16.8;8 Major Achievements in Microalgal Mass Culture Monitoring;299
16.9;9 Concluding Remarks;299
16.10;References;300
17;Chapter 14: Delayed Fluorescence;303
17.1;1 Introduction;303
17.2;2 Historical Overview;303
17.3;3 Basic Characteristics of Delayed Fluorescence;304
17.3.1;3.1 Delayed Fluorescence Decay Kinetics and Intensity;304
17.3.2;3.2 Physiology;306
17.3.2.1;3.2.1 Temperature and Illumination Intensity Dependance;306
17.3.2.2;3.2.2 Influence of Toxins;309
17.3.2.3;3.2.3 Nutrients;309
17.3.3;3.3 Delayed Fluorescence Excitation Spectroscopy;312
17.3.4;3.4 Photosynthetic Activity Index (PhAI);313
17.3.5;3.5 Delayed Fluorescence Visualisation;313
17.4;4 Delayed Fluorescence Applications;313
17.4.1;4.1 Description of the Instrument: What is Needed;313
17.4.2;4.2 Toxicity Tests;314
17.4.3;4.3 Primary Production;315
17.4.4;4.4 Delayed Fluorescence Excitation Spectroscopy;315
17.5;References;317
18;Chapter 15: The Study of Phytoplankton Photosynthesis by Photoacoustics;320
18.1;1 Introduction;320
18.2;2 The Photoacoustic Method;320
18.3;3 Efficiency of Photosynthesis and Photosynthesis Versus Energy Relationship;321
18.4;4 The Effect of Nutrient Limitation on Photosynthesis;322
18.5;5 The Effect of Lead Poisoning on Photosynthesis;322
18.6;6 Conclusions;323
18.7;References;323
19;Index;325




