Sudre / Baumgartner / Dalca | Uncertainty for Safe Utilization of Machine Learning in Medical Imaging | Buch | 978-3-031-16748-5 | sack.de

Buch, Englisch, Band 13563, 147 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 254 g

Reihe: Lecture Notes in Computer Science

Sudre / Baumgartner / Dalca

Uncertainty for Safe Utilization of Machine Learning in Medical Imaging

4th International Workshop, UNSURE 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Proceedings
1. Auflage 2022
ISBN: 978-3-031-16748-5
Verlag: Springer Nature Switzerland

4th International Workshop, UNSURE 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Proceedings

Buch, Englisch, Band 13563, 147 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 254 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-031-16748-5
Verlag: Springer Nature Switzerland


This book constitutes the refereed proceedings of the Fourth Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, UNSURE 2022, held in conjunction with MICCAI 2022. The conference was hybrid event held from Singapore. For this workshop, 13 papers from 22 submissions were accepted for publication. They focus on developing awareness and encouraging research in the field of uncertainty modelling to enable safe implementation of machine learning tools in the clinical world.

Sudre / Baumgartner / Dalca Uncertainty for Safe Utilization of Machine Learning in Medical Imaging jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Uncertainty Modelling.- MOrphologically-aware Jaccard-based ITerative Optimization (MOJITO) for Consensus Segmentation.- Quantification of Predictive Uncertainty via Inference-Time Sampling.- Uncertainty categories in medical image segmentation: a study of source-related diversity..- On the pitfalls of entropy-based uncertainty for multi-class semi-supervised segmentation.- What Do Untargeted Adversarial Examples Reveal In Medical Image Segmentation?..- Uncertainty calibration.- Improved post-hoc probability calibration for out-of-domain MRI segmentation..- Improving error detection in deep learning-based radiotherapy autocontouring using Bayesian uncertainty.- A Plug-and-Play Method to Compute Uncertainty.- Calibration of Deep Medical Image Classifiers: An Empirical Comparison using Dermatology and Histopathology Datasets.- Annotation uncertainty and out of distribution management.- nnOOD: A Framework for Benchmarking Self-supervised Anomaly Localisation Methods.- Generalized Probabilistic U-Net for medical image segmentation.- Joint paraspinal muscle segmentation and inter-rater labeling variability prediction with multi-task TransUNet.- Information Gain Sampling for Active Learning in Medical Image Classification.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.