Sucar | Causal Discovery | Buch | 978-3-031-98344-3 | sack.de

Buch, Englisch, 228 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 591 g

Reihe: Computer Science Foundations and Applied Logic

Sucar

Causal Discovery

Foundations, Algorithms and Applications
Erscheinungsjahr 2025
ISBN: 978-3-031-98344-3
Verlag: Birkhäuser

Foundations, Algorithms and Applications

Buch, Englisch, 228 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 591 g

Reihe: Computer Science Foundations and Applied Logic

ISBN: 978-3-031-98344-3
Verlag: Birkhäuser


This book presents an overview of , an emergent field with important developments in the last few years, and multiple applications in several fields.

The book is divided into three parts. The first part provides the necessary background on causal graphical models and causal reasoning. The second describes the main algorithms and techniques for causal discovery: (a) causal discovery from observational data, (b) causal discovery from interventional data, (c) causal discovery from temporal data, and (d) causal reinforcement learning. The third part provides several examples of causal discovery in practice, including applications in biomedicine, social sciences, artificial intelligence and robotics.

Topics and features:

  • Includes the necessary background material: a review of probability and graph theory, Bayesian networks, causal graphical models and causal reasoning
  • Covers the main types of causal discovery: learning from observational data, learning from interventional data, and learning from temporal data
  • Illustrates the application of causal discovery in practical problems
  • Includes some of the latest developments in the field, such as continuous optimization, causal event networks, causal discovery under subsampling, subject specific causal models, and causal reinforcement learning
  • Provides chapter exercises, including suggestions for research and programming projects

This book can be used as a textbook for an advanced undergraduate or a graduate course on causal discovery for students of computer science, engineering, social sciences, etc. It can also be used as a complement to a course on causality, together with another text on causal reasoning. It could also serve as a reference book for professionals that want to apply causal models in different areas, or anyone who is interested in knowing the basis of these techniques.

The intended audience are students and professionals in computer science, statistics and

engineering who want to know the principles of causal discovery and / or applied them in different

domains. It could also be of interest to students and professionals in other areas who want to apply

causal discovery, for instance in medicine and economics.

Sucar Causal Discovery jetzt bestellen!

Zielgruppe


Graduate


Autoren/Hrsg.


Weitere Infos & Material


1. Introduction.- 2. Causality.- 3. Causal Graphical Models.- 4. Causal Discovery from Observational Data.- 5. Causal Discovery from Interventional Data.- 6. Causal Discovery in Time Series.- 7. Causal Reinforcement Learning.


L. Enrique Sucar is Senior Research Scientist at the National Institute for Astrophysics, Optics and Electronics, Puebla, Mexico. He has published more than 400 papers in refereed journals and conferences, and is author of the Springer book, (2021, 2 ed.).



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.