E-Book, Englisch, 412 Seiten
Reihe: Micro and Nano Technologies
Processes, Materials and Applications
E-Book, Englisch, 412 Seiten
Reihe: Micro and Nano Technologies
ISBN: 978-1-4557-7857-7
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Emerging Nanotechnologies in Dentistry;4
3;Copyright Page;5
4;Contents;6
5;Foreword;16
6;Acknowledgments;18
7;Dedication;20
8;List of Contributors;22
9;1 Nanotechnology and the Future of Dentistry;26
9.1;1.1 Introduction;26
9.2;1.2 Nanotechnology Approaches;27
9.3;1.3 Nanotechnology to Nanomanufacturing;28
9.3.1;1.3.1 Top-Down Approach;29
9.3.2;1.3.2 Bottom-Up Approach;31
9.4;1.4 Nanodentistry;35
9.5;1.5 Future Directions and Conclusions;39
9.6;References;39
10;2 Nanoparticles for Dental Materials: Synthesis, Analysis, and Applications;40
10.1;2.1 Introduction: Why Use Nanoparticles?;41
10.2;2.2 Synthesis of Nanoparticles;41
10.2.1;2.2.1 Synthesis by Mechanical Attrition;42
10.2.2;2.2.2 Synthesis Through Sol–Gel Process;42
10.2.2.1;2.2.2.1 Functionalization of Oxide Nanoparticles;44
10.2.3;2.2.3 Synthesis of Silsesquioxane Nanoparticles;44
10.2.4;2.2.4 Synthesis of Polymer-Templated Nanoparticles;45
10.3;2.3 Examples of Dental Materials Using Nanoparticles;45
10.3.1;2.3.1 Nanocomposites Containing Oxide Nanoparticles;45
10.3.1.1;2.3.1.1 Nanofill Composites;46
10.3.1.2;2.3.1.2 Nanohybrid Composites;47
10.3.2;2.3.2 Silsesquioxane-Based Composites;48
10.3.3;2.3.3 Calcium Phosphate and Calcium Fluoride Nanoparticles-Based Composites;50
10.3.4;2.3.4 Nanoparticles in Glass Ionomer Systems;50
10.3.5;2.3.5 Nanotechnology in Dental Adhesives;51
10.4;2.4 Selected Properties of Dental Materials Containing Nanoparticles;51
10.4.1;2.4.1 Optical Properties;51
10.4.2;2.4.2 Wear Properties;52
10.4.3;2.4.3 Mechanical Properties;53
10.5;2.5 Clinical Experience with Dental Materials Containing Nanoparticles;54
10.6;2.6 Conclusions;55
10.7;References;55
11;3 Antimicrobial Nanoparticles in Restorative Composites;60
11.1;3.1 Introduction;60
11.2;3.2 Antibacterial Restorative Composites;61
11.2.1;3.2.1 Filler Phase Modification;61
11.2.1.1;3.2.1.1 Released Antibacterial Agents;61
11.2.1.2;3.2.1.2 Nonreleased Antibacterial Agents;62
11.2.2;3.2.2 Matrix Phase Modification;62
11.2.2.1;3.2.2.1 Released Antibacterial Agents;62
11.2.2.2;3.2.2.2 Nonreleased Antibacterial Agents;63
11.3;3.3 Antimicrobial Macromolecules;63
11.3.1;3.3.1 Polycationic Disinfectants;63
11.3.2;3.3.2 Polyethyleneimine;64
11.4;3.4 Nanoparticles;65
11.4.1;3.4.1 Polyethyleneimine Nanoparticles;65
11.4.1.1;3.4.1.1 Synthesis;65
11.4.1.2;3.4.1.2 Characterization;66
11.4.1.3;3.4.1.3 Incorporation of PEI Nanoparticles;68
11.5;3.5 Conclusions;69
11.6;References;69
12;4 Nanotechnology in Operative Dentistry: A Perspective Approach of History, Mechanical Behavior, and Clinical Application;74
12.1;4.1 Introduction;75
12.2;4.2 Historical Review: Nanotechnology Applications in Operative Dentistry;75
12.3;4.3 Biomimetics;75
12.4;4.4 Fillers in Composite Resins;77
12.5;4.5 SEM and EDS Evaluation;78
12.6;4.6 Filler Weight Content (wt%);79
12.7;4.7 Water Sorption;79
12.8;4.8 Mechanical Behavior;81
12.8.1;4.8.1 Compressive Strength;82
12.8.2;4.8.2 Diametral Tensile Strength;83
12.8.3;4.8.3 Flexural Strength and Flexural Modulus;84
12.8.4;4.8.4 Microhardness;85
12.8.5;4.8.5 Nanohardness;87
12.8.6;4.8.6 Wear Resistance;87
12.9;4.9 Clinical Applications;91
12.10;4.10 Conclusions;93
12.11;Acknowledgments;93
12.12;References;93
13;5 Impact of Nanotechnology on Dental Implants;96
13.1;5.1 Introduction;96
13.2;5.2 Nanoscale Surface Modifications;99
13.3;5.3 Interactions of Surface Dental Implants with Blood;100
13.4;5.4 Interactions Between Surfaces and MSCs;101
13.4.1;5.4.1 Origin of MSCs;101
13.4.2;5.4.2 Migration, Adhesion, and Proliferation;102
13.4.3;5.4.3 Differentiation;103
13.5;5.5 Tissue Integration;103
13.6;5.6 Conclusion;105
13.7;Acknowledgments;105
13.8;References;105
14;6 Titanium Surface Modification Techniques for Dental Implants—From Microscale to Nanoscale;110
14.1;6.1 Introduction;110
14.2;6.2 Titanium Surface Modification Methods;111
14.2.1;6.2.1 Morphological Modification of Titanium Surface;112
14.2.2;6.2.2 Physicochemical Modification of Titanium Surface;112
14.2.3;6.2.3 Biochemical Modification of Titanium Surface;113
14.2.3.1;6.2.3.1 Osteoinductive Biomolecular Cues;113
14.2.3.2;6.2.3.2 Micro- and Nanoscale Coating of HA/Calcium Phosphate/Alumina;115
14.2.3.3;6.2.3.3 Organic Nanoscale SAMs;117
14.2.3.4;6.2.3.4 Hydrogels on Titanium Surface;117
14.2.3.5;6.2.3.5 Antibacterial Titanium Surfaces;119
14.3;6.3 Limitations and Conclusion;121
14.4;Acknowledgment;122
14.5;References;122
15;7 Titanium Nanotubes as Carriers of Osteogenic Growth Factors and Antibacterial Drugs for Applications in Dental Implantology;128
15.1;7.1 Introduction;128
15.2;7.2 Titanium Nanotubes;129
15.3;7.3 TiO2 Nanotubes for Implant Fabrication;130
15.4;7.4 Functionalization of TiO2 Nanotubes with Growth Factors and Antibacterial/Anti-Inflammatory Drugs;130
15.5;7.5 Conclusions;134
15.6;References;135
16;8 Cellular Responses to Nanoscale Surface Modifications of Titanium Implants for Dentistry and Bone Tissue Engineering Applications;138
16.1;8.1 Introduction;138
16.2;8.2 Nanotopography Generated from Surface Modification of Ti Implants;139
16.2.1;8.2.1 Surface Modification of Ti Implants with Inorganic Materials/Nanoparticles;140
16.2.2;8.2.2 Surface Modifications of Ti Implants with Polymers;142
16.3;8.3 Nanotopography and Protein Absorption;143
16.4;8.4 Nanotopography Alters Osteoblast Responses;143
16.4.1;8.4.1 Cell Morphology;143
16.4.2;8.4.2 Cell Adhesion;144
16.4.3;8.4.3 Cell Proliferation;144
16.4.4;8.4.4 Bioactive Molecules;150
16.4.5;8.4.5 Osseointegration;151
16.5;8.5 Nanotopography and Stem Cell Responses;151
16.5.1;8.5.1 Effects of Nanotopography on Endothelial Progenitor Cells;152
16.5.2;8.5.2 Effects of Nanotopography on Bone Marrow Stem Cells;152
16.6;8.6 Conclusions;153
16.7;References;153
17;9 Corrosion Resistance of Ti6Al4V with Nanostructured TiO2 Coatings;162
17.1;9.1 Introduction;162
17.1.1;9.1.1 SiO2–CaO Coatings on Ti6Al4V Alloys;163
17.1.2;9.1.2 SiO2 and SiO2–TiO2 Intermediate Coatings on Titanium and Ti6Al4V Alloy;163
17.1.3;9.1.3 Coated HA on Ti6Al4V by Electrophoretic Deposition;164
17.1.4;9.1.4 Double-Layer Glass–Ceramic Coatings on Ti6Al4V;164
17.2;9.2 Nanostructured TiO2 Deposited on Ti6Al4V;164
17.2.1;9.2.1 Preparation of the Ti6Al4V Electrode;165
17.2.2;9.2.2 TiO2 Nanoparticles Coating;165
17.3;9.3 Characterization Techniques;165
17.3.1;9.3.1 SEM;165
17.3.2;9.3.2 Raman Microscopy;167
17.4;9.4 Corrosion Tests with Electrochemical Techniques;169
17.4.1;9.4.1 OCV and Tafel Analysis;170
17.4.2;9.4.2 EIS;172
17.5;9.5 Conclusions;172
17.6;References;172
18;10 Multiwalled Carbon Nanotubes/Hydroxyapatite Nanoparticles Incorporated GTR Membranes;176
18.1;10.1 Introduction;176
18.2;10.2 Periodontal Defects and GTR;177
18.2.1;10.2.1 Studies Using Nonresorbable Membranes;178
18.2.2;10.2.2 Studies Using Bioresorbable Membranes;178
18.2.3;10.2.3 Layer-Designed Membranes for GTR;179
18.3;10.3 Use of Electrospinning for Preparation of Nanocomposites;180
18.3.1;10.3.1 Electrospinning;180
18.3.2;10.3.2 CNTs Incorporated into Nanofibers;181
18.3.3;10.3.3 Organic–Inorganic Composite Nanofibers;182
18.4;10.4 GTR Membranes Based on Electrospun CNT/HA Nanoparticles Incorporated Composite Nanofibers;183
18.4.1;10.4.1 Fabrication of PLLA and PLLA/HA Composite Nanofibers;184
18.4.2;10.4.2 Fabrication of PLLA/MWCNTs/HA Composite Nanofibers;184
18.4.3;10.4.3 Characterization of PLLA/MWCNTs/HA Composite Nanofibers;185
18.4.4;10.4.4 Cell Culture on PLLA/MWCNTs/HA Composite Nanofibers Membranes;186
18.4.5;10.4.5 In-Vivo Implantation of PLLA/MWCNTs/HA Membranes;187
18.5;10.5 Conclusions;190
18.6;References;190
19;11 Fabrication of PEG Hydrogel Micropatterns by Soft-Photolithography and PEG Hydrogel as Guided Bone Regeneration Membrane in Dental Implantology;196
19.1;11.1 Introduction;197
19.2;11.2 Microfabrication;197
19.2.1;11.2.1 Microfabrication Techniques;198
19.2.1.1;11.2.1.1 Property Modification;198
19.2.1.2;11.2.1.2 Microfabrication by Patterning;198
19.2.1.3;11.2.1.3 Additive Microfabrication;198
19.2.1.4;11.2.1.4 Subtractive Microfabrication;198
19.3;11.3 Lithography;199
19.4;11.4 Hydrogel as a Biomaterial;199
19.5;11.5 Soft-Photolithography of Hydrogel Micropatterns;200
19.5.1;11.5.1 Fabrication of PDMS St200
19.5.1.1;11.5.1.1 Design of the Photomask;200
19.5.1.2;11.5.1.2 Fabrication of “Master” or Negative Mould;200
19.5.1.3;11.5.1.3 Fabrication of PDMS;200
19.5.2;11.5.2 Surface Functionalization of Silicon Substrates by Silanization;202
19.5.3;11.5.3 Soft-Photolithography;203
19.6;11.6 PEG Hydrogel as GBR Membrane in Dental Implantology;209
19.7;11.7 Conclusions;210
19.8;Acknowledgments;210
19.9;References;210
20;12 Nano-Apatitic Composite Scaffolds for Stem Cell Delivery and Bone Tissue Engineering;214
20.1;12.1 Introduction;214
20.2;12.2 Development of Nano-Apatitic and Macroporous Scaffolds;215
20.3;12.3 Cell Infiltration into Scaffold;217
20.4;12.4 Biomimetic Nano-Apatite–Collagen Fiber Scaffold;220
20.5;12.5 Fast Fracture of Nano-Apatite Scaffold;220
20.6;12.6 Fatigue of Nano-Apatite Scaffold;222
20.7;12.7 Nano-Apatite Scaffold–Human Umbilical Cord Stem Cell Interactions;223
20.8;12.8 Seeding Bone Marrow Stem Cells on Nano-Apatite Scaffolds;226
20.9;12.9 Conclusions;228
20.10;Acknowledgments;229
20.11;References;229
21;13 Self-Assembly of Proteins and Peptides and Their Applications in Bionanotechnology and Dentistry;234
21.1;13.1 Introduction;234
21.2;13.2 Mechanism of Molecular Self-Assembly;235
21.3;13.3 Classification of Self-Assembly;235
21.4;13.4 Self-Assembly of Proteins and Peptides;238
21.5;13.5 Bionanotechnology Applications;238
21.6;13.6 Peptide Nanofibers, Nanotubes, and Nanowires;239
21.7;13.7 Three-Dimensional Peptide Matrix Scaffolds;243
21.8;13.8 Advantages and Limitations of Self-Assembling Peptide Matrix Scaffolds;245
21.9;13.9 Self-Assembly in Regenerative Biology and Dentistry;245
21.10;13.10 Conclusions;247
21.11;References;247
22;14 Bone Regeneration Using Self-Assembled Nanoparticle-Based Scaffolds;250
22.1;14.1 Introduction;250
22.2;14.2 Scaffolding Biomaterials;252
22.3;14.3 Growth Factors;254
22.4;14.4 Controlled Release Technology;256
22.5;14.5 Controlled Release Systems for Bone Regeneration;257
22.6;14.6 Conclusions;260
22.7;References;260
23;15 Surface Engineering of Dental Tools with Diamond for Improved Life and Performance;264
23.1;15.1 Tooth Materials;265
23.2;15.2 Dental Burs;266
23.3;15.3 Chemical Vapor Deposition of Diamond Films onto Dental Burs;269
23.3.1;15.3.1 Plasma-Enhanced CVD;270
23.3.1.1;15.3.1.1 Microwave Plasma-Enhanced CVD;270
23.3.1.2;15.3.1.2 RF Plasma-Enhanced CVD;270
23.3.1.3;15.3.1.3 DC Plasma-Enhanced CVD;271
23.3.2;15.3.2 Hot Filament CVD;271
23.3.2.1;15.3.2.1 Growth Mechanisms;271
23.3.2.2;15.3.2.2 Filament Characteristics;273
23.3.2.3;15.3.2.3 Diamond Nucleation Process;274
23.3.3;15.3.3 Controlling Structure and Morphology;275
23.3.3.1;15.3.3.1 Effects of Temperature;275
23.3.3.2;15.3.3.2 Effect of Negative BEN on the Dental Bur;279
23.3.3.3;15.3.3.3 Effects of Substrate Preparation on Diamond Deposition;284
23.4;15.4 Bur Performance Investigations;284
23.4.1;15.4.1 Tool Preparation;284
23.4.2;15.4.2 CVD Diamond Deposition on the Dental Burs;284
23.4.3;15.4.3 Dental Bur Machining: Drilling Experiments;284
23.4.4;15.4.4 Dental Bur Machining: Machining Experiments on Human Teeth;285
23.4.5;15.4.5 Performance Testing;286
23.4.6;15.4.6 Drilling Experiments;288
23.4.7;15.4.7 Performance Results;288
23.5;15.5 Conclusions;294
23.6;References;294
24;16 Nanomechanical Characterization of Mineralized Tissues in the Oral Cavity;298
24.1;16.1 Introduction;298
24.2;16.2 Basic Data Analysis Protocol for Nanoindentation;299
24.3;16.3 Nanoindentation of Oral Mineralized Tissues;301
24.3.1;16.3.1 Sample Preparation;301
24.3.2;16.3.2 Hydration;301
24.3.3;16.3.3 Indenter Tips;302
24.3.4;16.3.4 Load Function and Data Analysis;303
24.3.5;16.3.5 Microstructural Influence;305
24.4;16.4 Conclusions;309
24.5;References;311
25;17 Nanoindentation Techniques for the Determination of Mechanical Properties of Materials in Dentistry;314
25.1;17.1 Introduction;314
25.2;17.2 Basic Information from the Load–Displacement Curves;316
25.2.1;17.2.1 Hardness and Elastic Modulus;316
25.2.2;17.2.2 Harmonic Contact Stiffness;317
25.2.3;17.2.3 Work of Indentation and Other Information from P–h Curves;318
25.2.4;17.2.4 Indenter Calibration;318
25.3;17.3 Characterization of Inelastic Properties;319
25.3.1;17.3.1 Stress–Strain Diagram;319
25.3.2;17.3.2 Yield Stress;320
25.4;17.4 Determination of Properties in Nonhomogeneous Bodies;321
25.4.1;17.4.1 Surface Layers and Coatings;321
25.4.2;17.4.2 Multiphase Microstructure;323
25.5;17.5 Characterization of Time-Dependent Load Response;323
25.6;17.6 Resistance Against Crack Propagation;326
25.7;17.7 Scratch Tests for the Evaluation of Friction and Wear Resistance;327
25.8;17.8 Devices for Nanoindentation;328
25.9;Acknowledgment;329
25.10;References;329
26;18 Nanocharacterization Techniques for Dental Implant Development;332
26.1;18.1 Measurement of the Topology of Nanostructures;333
26.1.1;18.1.1 Field Emission Scanning Electron Microscope;333
26.1.1.1;18.1.1.1 FESEM Case Studies;333
26.1.2;18.1.2 Scanning Probe Microscopy;334
26.1.2.1;18.1.2.1 Scanning Tunneling Microscope;334
26.1.2.2;18.1.2.2 Atomic Force Microscope;336
26.1.2.2.1;AFM Case Studies;336
26.1.3;18.1.3 Confocal Microscopy and Interferometry;337
26.1.3.1;18.1.3.1 Confocal Microscopy;337
26.1.3.1.1;Confocal Microscopy Case Studies;338
26.1.3.2;18.1.3.2 Interferometry;339
26.1.3.2.1;Interferometry Case Studies;340
26.2;18.2 Measurement of Nanostructure Internal Geometries;340
26.2.1;18.2.1 Transmission Electron Microscope;340
26.2.1.1;18.2.1.1 TEM Case Studies;340
26.2.2;18.2.2 Focused Ion Beam;342
26.2.2.1;18.2.2.1 FIB Case Studies;342
26.2.3;18.2.3 X-Ray Diffraction;343
26.2.3.1;18.2.3.1 XRD Case Studies;344
26.2.4;18.2.4 Mercury Porosimetry;344
26.2.4.1;18.2.4.1 Mercury Porosimetry Case Studies;346
26.3;18.3 Measurement of Composition of Nanostructures;346
26.3.1;18.3.1 Energy Dispersive X-Ray Spectroscopy;346
26.3.1.1;18.3.1.1 EDS Case Study;347
26.3.2;18.3.2 X-Ray Photoelectron Spectroscopy;347
26.3.2.1;18.3.2.1 XPS Case Study;348
26.3.3;18.3.3 Secondary Ion Mass Spectroscopy;348
26.3.3.1;18.3.3.1 SIMS Case Studies;349
26.3.4;18.3.4 Auger Electron Spectroscopy;349
26.3.4.1;18.3.4.1 AES Case Studies;350
26.4;18.4 Measurement of the Mechanical Properties of Nanostructures;351
26.4.1;18.4.1 Nanoscratch Testing;351
26.4.2;18.4.2 Nanohardness Test;351
26.5;18.5 Conclusions;352
26.6;References;353
27;19 Nanoparticulate Drug Delivery Systems for Oral Cancer Treatment;358
27.1;19.1 Introduction;358
27.2;19.2 Cancer Treatment Techniques;359
27.3;19.3 Mechanism of Action of Chemotherapeutic Agents;360
27.3.1;19.3.1 Prevention of Synthesis of Pre-DNA Molecule Building Blocks;360
27.3.2;19.3.2 Chemical Damage of DNA in the Cell Nuclei;360
27.4;19.4 Oral Cancer;360
27.5;19.5 TNM Classification of Tumors;361
27.6;19.6 Management of Oral Cancer;361
27.7;19.7 Nanoparticulate-Based Drug Delivery in Cancer Treatment;363
27.7.1;19.7.1 Gold Nanoparticles for Anticarcinogenic Drug Delivery;364
27.7.2;19.7.2 Liposomes in Oral Cancer Treatment;365
27.7.3;19.7.3 Magnetic Nanoparticles in Oral Cancer Treatment;367
27.7.4;19.7.4 Polymeric Micelles as Drug Delivery Systems;367
27.8;19.8 Conclusions;368
27.9;References;368
28;20 Carbon Nanotubes in Cancer Therapy and Drug Delivery;372
28.1;20.1 Introduction;372
28.2;20.2 Cellular Uptake of CNTs;374
28.3;20.3 CNTs as Carriers for Drug, Gene, and Protein;375
28.3.1;20.3.1 CNTs as Carriers of Anticancer Molecules;375
28.3.2;20.3.2 CNTs as Carriers of Immunoactive Compounds, Proteins, and Genetic Materials;378
28.3.3;20.3.3 CNTs as Carriers for Antimicrobial Molecules;382
28.3.4;20.3.4 Photothermal Therapy of Cancer Using CNTs;382
28.4;20.4 CNTs for Oral Cancer Therapy;383
28.5;20.5 Conclusions;384
28.6;References;385
29;21 Nanodiagnostics in Microbiology and Dentistry;390
29.1;21.1 Introduction;391
29.2;21.2 Nanomaterials;392
29.2.1;21.2.1 Applications of Nanomaterials;392
29.2.1.1;21.2.1.1 Sunscreens and Cosmetics;392
29.2.1.2;21.2.1.2 Composites;392
29.2.1.3;21.2.1.3 Clays;392
29.2.1.4;21.2.1.4 Coatings and Surfaces;392
29.2.1.5;21.2.1.5 Tougher and Harder Cutting Tools;393
29.3;21.3 Biomedical Applications of Nanotechnology and its Limitations;393
29.4;21.4 Nanotechnology Applications in Drug Delivery Systems, Nanodiagnostics, and Various Other Fields;393
29.4.1;21.4.1 Drug Delivery System;393
29.4.1.1;21.4.1.1 Nanobots and its Uses;393
29.4.1.2;21.4.1.2 Use of Nanorattles;394
29.4.2;21.4.2 Nanodiagnostics and Disease Prevention;394
29.4.2.1;21.4.2.1 Biosensors;394
29.4.2.2;21.4.2.2 Diagnosis Using Nanobots;395
29.4.2.3;21.4.2.3 Quantum Dots;395
29.4.2.4;21.4.2.4 Regenerative Medicine;396
29.4.3;21.4.3 Disease Prevention;396
29.4.3.1;21.4.3.1 Cardiovascular Interventions;396
29.4.3.2;21.4.3.2 Nanoparticles and the Blood–Brain Barrier: As Treatment Opportunity;396
29.4.3.3;21.4.3.3 Tissue Reconstruction;397
29.4.3.4;21.4.3.4 Medical Tools;397
29.4.4;21.4.4 Other Applications;397
29.4.4.1;21.4.4.1 Treatment of Injured Nerves;397
29.4.4.2;21.4.4.2 Nanocapsules;398
29.4.4.3;21.4.4.3 Nanotubes;398
29.4.4.4;21.4.4.4 Nanosomes;399
29.4.4.5;21.4.4.5 Nanowires;399
29.4.4.6;21.4.4.6 Needle-Free, Painless Vaccinations with Nanopatches;399
29.4.4.7;21.4.4.7 Nanomagnets Remove Pathogens from Blood;400
29.4.4.8;21.4.4.8 Nanocrystalline Silver;400
29.4.4.9;21.4.4.9 Nanospheres;401
29.5;21.5 Contribution of Microbiology to Nanotechnology;401
29.6;21.6 AFM Imaging of Microorganisms;402
29.6.1;21.6.1 Yeast;402
29.6.2;21.6.2 Bacteria;403
29.6.3;21.6.3 AFM Study of the Structure–Function Relationship of the Biofilm-Forming Bacterium Streptococcus mutans;403
29.6.4;21.6.4 Viruses;405
29.7;21.7 Nanoplasmonic Sensors Detecting Live Viruses;406
29.8;21.8 Nanodentistry;407
29.8.1;21.8.1 The Impact of Nanotechnology;407
29.8.1.1;21.8.1.1 Dynamic View of Dental Tissues;408
29.8.1.2;21.8.1.2 What Are We Really Bonding to?;409
29.8.1.3;21.8.1.3 “Small Is Beautiful” of Dental Science: Small Structures, Great Strength;409
29.8.1.4;21.8.1.4 Biofilm Formation and Treatment;410
29.8.2;21.8.2 Nanotechnology in Periodontics;411
29.8.2.1;21.8.2.1 Local Anesthesia and Hypersensitivity Cure;411
29.8.2.2;21.8.2.2 Natural Tooth Maintenance and Repair;411
29.8.2.3;21.8.2.3 Nanorobotic Dentifrice (Dentifrobots);412
29.9;21.9 Conclusions;412
29.10;References;412
30;Index;416