Subramani / Ahmed | Emerging Nanotechnologies in Dentistry | E-Book | sack.de
E-Book

E-Book, Englisch, 412 Seiten

Reihe: Micro and Nano Technologies

Subramani / Ahmed Emerging Nanotechnologies in Dentistry

Processes, Materials and Applications

E-Book, Englisch, 412 Seiten

Reihe: Micro and Nano Technologies

ISBN: 978-1-4557-7857-7
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



New nanomaterials are leading to a range of emerging dental treatments that utilize more biomimetic materials that more closely duplicate natural tooth structure (or bone, in the case of implants). The use of nanostructures that will work in harmony with the body's own regenerative processes (eg, to restore tooth structure or alveolar bone) are moving into clinical practice. This book brings together an international team of experts from the fields of nanomaterials, biomedical engineering and dentistry, to cover the new materials and techniques with potential for use intra-orally or extra-orally for the restoration, fixation, replacement, or regeneration of hard and soft tissues in and about the oral cavity and craniofacial region. New dental nanotechnologies include the use of advanced inorganic and organic materials, smart and biomimetic materials, tissue engineering and drug delivery strategies. - Book prepared by an interdisciplinary and international group of bio-nanomaterial scientists and dental/oral biomedical researchers - Comprehensive professional reference for the subject covering materials fabrication and use of materials for all major diagnostic and therapeutic dental applications - repair,restoration, regeneration, implants and prevention - Book focuses in depth on the materials manufacturing processes involved with emphasis on pre-clinical and clinical applications, use and biocompatibility
Subramani / Ahmed Emerging Nanotechnologies in Dentistry jetzt bestellen!

Weitere Infos & Material


1;Front Cover;1
2;Emerging Nanotechnologies in Dentistry;4
3;Copyright Page;5
4;Contents;6
5;Foreword;16
6;Acknowledgments;18
7;Dedication;20
8;List of Contributors;22
9;1 Nanotechnology and the Future of Dentistry;26
9.1;1.1 Introduction;26
9.2;1.2 Nanotechnology Approaches;27
9.3;1.3 Nanotechnology to Nanomanufacturing;28
9.3.1;1.3.1 Top-Down Approach;29
9.3.2;1.3.2 Bottom-Up Approach;31
9.4;1.4 Nanodentistry;35
9.5;1.5 Future Directions and Conclusions;39
9.6;References;39
10;2 Nanoparticles for Dental Materials: Synthesis, Analysis, and Applications;40
10.1;2.1 Introduction: Why Use Nanoparticles?;41
10.2;2.2 Synthesis of Nanoparticles;41
10.2.1;2.2.1 Synthesis by Mechanical Attrition;42
10.2.2;2.2.2 Synthesis Through Sol–Gel Process;42
10.2.2.1;2.2.2.1 Functionalization of Oxide Nanoparticles;44
10.2.3;2.2.3 Synthesis of Silsesquioxane Nanoparticles;44
10.2.4;2.2.4 Synthesis of Polymer-Templated Nanoparticles;45
10.3;2.3 Examples of Dental Materials Using Nanoparticles;45
10.3.1;2.3.1 Nanocomposites Containing Oxide Nanoparticles;45
10.3.1.1;2.3.1.1 Nanofill Composites;46
10.3.1.2;2.3.1.2 Nanohybrid Composites;47
10.3.2;2.3.2 Silsesquioxane-Based Composites;48
10.3.3;2.3.3 Calcium Phosphate and Calcium Fluoride Nanoparticles-Based Composites;50
10.3.4;2.3.4 Nanoparticles in Glass Ionomer Systems;50
10.3.5;2.3.5 Nanotechnology in Dental Adhesives;51
10.4;2.4 Selected Properties of Dental Materials Containing Nanoparticles;51
10.4.1;2.4.1 Optical Properties;51
10.4.2;2.4.2 Wear Properties;52
10.4.3;2.4.3 Mechanical Properties;53
10.5;2.5 Clinical Experience with Dental Materials Containing Nanoparticles;54
10.6;2.6 Conclusions;55
10.7;References;55
11;3 Antimicrobial Nanoparticles in Restorative Composites;60
11.1;3.1 Introduction;60
11.2;3.2 Antibacterial Restorative Composites;61
11.2.1;3.2.1 Filler Phase Modification;61
11.2.1.1;3.2.1.1 Released Antibacterial Agents;61
11.2.1.2;3.2.1.2 Nonreleased Antibacterial Agents;62
11.2.2;3.2.2 Matrix Phase Modification;62
11.2.2.1;3.2.2.1 Released Antibacterial Agents;62
11.2.2.2;3.2.2.2 Nonreleased Antibacterial Agents;63
11.3;3.3 Antimicrobial Macromolecules;63
11.3.1;3.3.1 Polycationic Disinfectants;63
11.3.2;3.3.2 Polyethyleneimine;64
11.4;3.4 Nanoparticles;65
11.4.1;3.4.1 Polyethyleneimine Nanoparticles;65
11.4.1.1;3.4.1.1 Synthesis;65
11.4.1.2;3.4.1.2 Characterization;66
11.4.1.3;3.4.1.3 Incorporation of PEI Nanoparticles;68
11.5;3.5 Conclusions;69
11.6;References;69
12;4 Nanotechnology in Operative Dentistry: A Perspective Approach of History, Mechanical Behavior, and Clinical Application;74
12.1;4.1 Introduction;75
12.2;4.2 Historical Review: Nanotechnology Applications in Operative Dentistry;75
12.3;4.3 Biomimetics;75
12.4;4.4 Fillers in Composite Resins;77
12.5;4.5 SEM and EDS Evaluation;78
12.6;4.6 Filler Weight Content (wt%);79
12.7;4.7 Water Sorption;79
12.8;4.8 Mechanical Behavior;81
12.8.1;4.8.1 Compressive Strength;82
12.8.2;4.8.2 Diametral Tensile Strength;83
12.8.3;4.8.3 Flexural Strength and Flexural Modulus;84
12.8.4;4.8.4 Microhardness;85
12.8.5;4.8.5 Nanohardness;87
12.8.6;4.8.6 Wear Resistance;87
12.9;4.9 Clinical Applications;91
12.10;4.10 Conclusions;93
12.11;Acknowledgments;93
12.12;References;93
13;5 Impact of Nanotechnology on Dental Implants;96
13.1;5.1 Introduction;96
13.2;5.2 Nanoscale Surface Modifications;99
13.3;5.3 Interactions of Surface Dental Implants with Blood;100
13.4;5.4 Interactions Between Surfaces and MSCs;101
13.4.1;5.4.1 Origin of MSCs;101
13.4.2;5.4.2 Migration, Adhesion, and Proliferation;102
13.4.3;5.4.3 Differentiation;103
13.5;5.5 Tissue Integration;103
13.6;5.6 Conclusion;105
13.7;Acknowledgments;105
13.8;References;105
14;6 Titanium Surface Modification Techniques for Dental Implants—From Microscale to Nanoscale;110
14.1;6.1 Introduction;110
14.2;6.2 Titanium Surface Modification Methods;111
14.2.1;6.2.1 Morphological Modification of Titanium Surface;112
14.2.2;6.2.2 Physicochemical Modification of Titanium Surface;112
14.2.3;6.2.3 Biochemical Modification of Titanium Surface;113
14.2.3.1;6.2.3.1 Osteoinductive Biomolecular Cues;113
14.2.3.2;6.2.3.2 Micro- and Nanoscale Coating of HA/Calcium Phosphate/Alumina;115
14.2.3.3;6.2.3.3 Organic Nanoscale SAMs;117
14.2.3.4;6.2.3.4 Hydrogels on Titanium Surface;117
14.2.3.5;6.2.3.5 Antibacterial Titanium Surfaces;119
14.3;6.3 Limitations and Conclusion;121
14.4;Acknowledgment;122
14.5;References;122
15;7 Titanium Nanotubes as Carriers of Osteogenic Growth Factors and Antibacterial Drugs for Applications in Dental Implantology;128
15.1;7.1 Introduction;128
15.2;7.2 Titanium Nanotubes;129
15.3;7.3 TiO2 Nanotubes for Implant Fabrication;130
15.4;7.4 Functionalization of TiO2 Nanotubes with Growth Factors and Antibacterial/Anti-Inflammatory Drugs;130
15.5;7.5 Conclusions;134
15.6;References;135
16;8 Cellular Responses to Nanoscale Surface Modifications of Titanium Implants for Dentistry and Bone Tissue Engineering Applications;138
16.1;8.1 Introduction;138
16.2;8.2 Nanotopography Generated from Surface Modification of Ti Implants;139
16.2.1;8.2.1 Surface Modification of Ti Implants with Inorganic Materials/Nanoparticles;140
16.2.2;8.2.2 Surface Modifications of Ti Implants with Polymers;142
16.3;8.3 Nanotopography and Protein Absorption;143
16.4;8.4 Nanotopography Alters Osteoblast Responses;143
16.4.1;8.4.1 Cell Morphology;143
16.4.2;8.4.2 Cell Adhesion;144
16.4.3;8.4.3 Cell Proliferation;144
16.4.4;8.4.4 Bioactive Molecules;150
16.4.5;8.4.5 Osseointegration;151
16.5;8.5 Nanotopography and Stem Cell Responses;151
16.5.1;8.5.1 Effects of Nanotopography on Endothelial Progenitor Cells;152
16.5.2;8.5.2 Effects of Nanotopography on Bone Marrow Stem Cells;152
16.6;8.6 Conclusions;153
16.7;References;153
17;9 Corrosion Resistance of Ti6Al4V with Nanostructured TiO2 Coatings;162
17.1;9.1 Introduction;162
17.1.1;9.1.1 SiO2–CaO Coatings on Ti6Al4V Alloys;163
17.1.2;9.1.2 SiO2 and SiO2–TiO2 Intermediate Coatings on Titanium and Ti6Al4V Alloy;163
17.1.3;9.1.3 Coated HA on Ti6Al4V by Electrophoretic Deposition;164
17.1.4;9.1.4 Double-Layer Glass–Ceramic Coatings on Ti6Al4V;164
17.2;9.2 Nanostructured TiO2 Deposited on Ti6Al4V;164
17.2.1;9.2.1 Preparation of the Ti6Al4V Electrode;165
17.2.2;9.2.2 TiO2 Nanoparticles Coating;165
17.3;9.3 Characterization Techniques;165
17.3.1;9.3.1 SEM;165
17.3.2;9.3.2 Raman Microscopy;167
17.4;9.4 Corrosion Tests with Electrochemical Techniques;169
17.4.1;9.4.1 OCV and Tafel Analysis;170
17.4.2;9.4.2 EIS;172
17.5;9.5 Conclusions;172
17.6;References;172
18;10 Multiwalled Carbon Nanotubes/Hydroxyapatite Nanoparticles Incorporated GTR Membranes;176
18.1;10.1 Introduction;176
18.2;10.2 Periodontal Defects and GTR;177
18.2.1;10.2.1 Studies Using Nonresorbable Membranes;178
18.2.2;10.2.2 Studies Using Bioresorbable Membranes;178
18.2.3;10.2.3 Layer-Designed Membranes for GTR;179
18.3;10.3 Use of Electrospinning for Preparation of Nanocomposites;180
18.3.1;10.3.1 Electrospinning;180
18.3.2;10.3.2 CNTs Incorporated into Nanofibers;181
18.3.3;10.3.3 Organic–Inorganic Composite Nanofibers;182
18.4;10.4 GTR Membranes Based on Electrospun CNT/HA Nanoparticles Incorporated Composite Nanofibers;183
18.4.1;10.4.1 Fabrication of PLLA and PLLA/HA Composite Nanofibers;184
18.4.2;10.4.2 Fabrication of PLLA/MWCNTs/HA Composite Nanofibers;184
18.4.3;10.4.3 Characterization of PLLA/MWCNTs/HA Composite Nanofibers;185
18.4.4;10.4.4 Cell Culture on PLLA/MWCNTs/HA Composite Nanofibers Membranes;186
18.4.5;10.4.5 In-Vivo Implantation of PLLA/MWCNTs/HA Membranes;187
18.5;10.5 Conclusions;190
18.6;References;190
19;11 Fabrication of PEG Hydrogel Micropatterns by Soft-Photolithography and PEG Hydrogel as Guided Bone Regeneration Membrane in Dental Implantology;196
19.1;11.1 Introduction;197
19.2;11.2 Microfabrication;197
19.2.1;11.2.1 Microfabrication Techniques;198
19.2.1.1;11.2.1.1 Property Modification;198
19.2.1.2;11.2.1.2 Microfabrication by Patterning;198
19.2.1.3;11.2.1.3 Additive Microfabrication;198
19.2.1.4;11.2.1.4 Subtractive Microfabrication;198
19.3;11.3 Lithography;199
19.4;11.4 Hydrogel as a Biomaterial;199
19.5;11.5 Soft-Photolithography of Hydrogel Micropatterns;200
19.5.1;11.5.1 Fabrication of PDMS St200
19.5.1.1;11.5.1.1 Design of the Photomask;200
19.5.1.2;11.5.1.2 Fabrication of “Master” or Negative Mould;200
19.5.1.3;11.5.1.3 Fabrication of PDMS;200
19.5.2;11.5.2 Surface Functionalization of Silicon Substrates by Silanization;202
19.5.3;11.5.3 Soft-Photolithography;203
19.6;11.6 PEG Hydrogel as GBR Membrane in Dental Implantology;209
19.7;11.7 Conclusions;210
19.8;Acknowledgments;210
19.9;References;210
20;12 Nano-Apatitic Composite Scaffolds for Stem Cell Delivery and Bone Tissue Engineering;214
20.1;12.1 Introduction;214
20.2;12.2 Development of Nano-Apatitic and Macroporous Scaffolds;215
20.3;12.3 Cell Infiltration into Scaffold;217
20.4;12.4 Biomimetic Nano-Apatite–Collagen Fiber Scaffold;220
20.5;12.5 Fast Fracture of Nano-Apatite Scaffold;220
20.6;12.6 Fatigue of Nano-Apatite Scaffold;222
20.7;12.7 Nano-Apatite Scaffold–Human Umbilical Cord Stem Cell Interactions;223
20.8;12.8 Seeding Bone Marrow Stem Cells on Nano-Apatite Scaffolds;226
20.9;12.9 Conclusions;228
20.10;Acknowledgments;229
20.11;References;229
21;13 Self-Assembly of Proteins and Peptides and Their Applications in Bionanotechnology and Dentistry;234
21.1;13.1 Introduction;234
21.2;13.2 Mechanism of Molecular Self-Assembly;235
21.3;13.3 Classification of Self-Assembly;235
21.4;13.4 Self-Assembly of Proteins and Peptides;238
21.5;13.5 Bionanotechnology Applications;238
21.6;13.6 Peptide Nanofibers, Nanotubes, and Nanowires;239
21.7;13.7 Three-Dimensional Peptide Matrix Scaffolds;243
21.8;13.8 Advantages and Limitations of Self-Assembling Peptide Matrix Scaffolds;245
21.9;13.9 Self-Assembly in Regenerative Biology and Dentistry;245
21.10;13.10 Conclusions;247
21.11;References;247
22;14 Bone Regeneration Using Self-Assembled Nanoparticle-Based Scaffolds;250
22.1;14.1 Introduction;250
22.2;14.2 Scaffolding Biomaterials;252
22.3;14.3 Growth Factors;254
22.4;14.4 Controlled Release Technology;256
22.5;14.5 Controlled Release Systems for Bone Regeneration;257
22.6;14.6 Conclusions;260
22.7;References;260
23;15 Surface Engineering of Dental Tools with Diamond for Improved Life and Performance;264
23.1;15.1 Tooth Materials;265
23.2;15.2 Dental Burs;266
23.3;15.3 Chemical Vapor Deposition of Diamond Films onto Dental Burs;269
23.3.1;15.3.1 Plasma-Enhanced CVD;270
23.3.1.1;15.3.1.1 Microwave Plasma-Enhanced CVD;270
23.3.1.2;15.3.1.2 RF Plasma-Enhanced CVD;270
23.3.1.3;15.3.1.3 DC Plasma-Enhanced CVD;271
23.3.2;15.3.2 Hot Filament CVD;271
23.3.2.1;15.3.2.1 Growth Mechanisms;271
23.3.2.2;15.3.2.2 Filament Characteristics;273
23.3.2.3;15.3.2.3 Diamond Nucleation Process;274
23.3.3;15.3.3 Controlling Structure and Morphology;275
23.3.3.1;15.3.3.1 Effects of Temperature;275
23.3.3.2;15.3.3.2 Effect of Negative BEN on the Dental Bur;279
23.3.3.3;15.3.3.3 Effects of Substrate Preparation on Diamond Deposition;284
23.4;15.4 Bur Performance Investigations;284
23.4.1;15.4.1 Tool Preparation;284
23.4.2;15.4.2 CVD Diamond Deposition on the Dental Burs;284
23.4.3;15.4.3 Dental Bur Machining: Drilling Experiments;284
23.4.4;15.4.4 Dental Bur Machining: Machining Experiments on Human Teeth;285
23.4.5;15.4.5 Performance Testing;286
23.4.6;15.4.6 Drilling Experiments;288
23.4.7;15.4.7 Performance Results;288
23.5;15.5 Conclusions;294
23.6;References;294
24;16 Nanomechanical Characterization of Mineralized Tissues in the Oral Cavity;298
24.1;16.1 Introduction;298
24.2;16.2 Basic Data Analysis Protocol for Nanoindentation;299
24.3;16.3 Nanoindentation of Oral Mineralized Tissues;301
24.3.1;16.3.1 Sample Preparation;301
24.3.2;16.3.2 Hydration;301
24.3.3;16.3.3 Indenter Tips;302
24.3.4;16.3.4 Load Function and Data Analysis;303
24.3.5;16.3.5 Microstructural Influence;305
24.4;16.4 Conclusions;309
24.5;References;311
25;17 Nanoindentation Techniques for the Determination of Mechanical Properties of Materials in Dentistry;314
25.1;17.1 Introduction;314
25.2;17.2 Basic Information from the Load–Displacement Curves;316
25.2.1;17.2.1 Hardness and Elastic Modulus;316
25.2.2;17.2.2 Harmonic Contact Stiffness;317
25.2.3;17.2.3 Work of Indentation and Other Information from P–h Curves;318
25.2.4;17.2.4 Indenter Calibration;318
25.3;17.3 Characterization of Inelastic Properties;319
25.3.1;17.3.1 Stress–Strain Diagram;319
25.3.2;17.3.2 Yield Stress;320
25.4;17.4 Determination of Properties in Nonhomogeneous Bodies;321
25.4.1;17.4.1 Surface Layers and Coatings;321
25.4.2;17.4.2 Multiphase Microstructure;323
25.5;17.5 Characterization of Time-Dependent Load Response;323
25.6;17.6 Resistance Against Crack Propagation;326
25.7;17.7 Scratch Tests for the Evaluation of Friction and Wear Resistance;327
25.8;17.8 Devices for Nanoindentation;328
25.9;Acknowledgment;329
25.10;References;329
26;18 Nanocharacterization Techniques for Dental Implant Development;332
26.1;18.1 Measurement of the Topology of Nanostructures;333
26.1.1;18.1.1 Field Emission Scanning Electron Microscope;333
26.1.1.1;18.1.1.1 FESEM Case Studies;333
26.1.2;18.1.2 Scanning Probe Microscopy;334
26.1.2.1;18.1.2.1 Scanning Tunneling Microscope;334
26.1.2.2;18.1.2.2 Atomic Force Microscope;336
26.1.2.2.1;AFM Case Studies;336
26.1.3;18.1.3 Confocal Microscopy and Interferometry;337
26.1.3.1;18.1.3.1 Confocal Microscopy;337
26.1.3.1.1;Confocal Microscopy Case Studies;338
26.1.3.2;18.1.3.2 Interferometry;339
26.1.3.2.1;Interferometry Case Studies;340
26.2;18.2 Measurement of Nanostructure Internal Geometries;340
26.2.1;18.2.1 Transmission Electron Microscope;340
26.2.1.1;18.2.1.1 TEM Case Studies;340
26.2.2;18.2.2 Focused Ion Beam;342
26.2.2.1;18.2.2.1 FIB Case Studies;342
26.2.3;18.2.3 X-Ray Diffraction;343
26.2.3.1;18.2.3.1 XRD Case Studies;344
26.2.4;18.2.4 Mercury Porosimetry;344
26.2.4.1;18.2.4.1 Mercury Porosimetry Case Studies;346
26.3;18.3 Measurement of Composition of Nanostructures;346
26.3.1;18.3.1 Energy Dispersive X-Ray Spectroscopy;346
26.3.1.1;18.3.1.1 EDS Case Study;347
26.3.2;18.3.2 X-Ray Photoelectron Spectroscopy;347
26.3.2.1;18.3.2.1 XPS Case Study;348
26.3.3;18.3.3 Secondary Ion Mass Spectroscopy;348
26.3.3.1;18.3.3.1 SIMS Case Studies;349
26.3.4;18.3.4 Auger Electron Spectroscopy;349
26.3.4.1;18.3.4.1 AES Case Studies;350
26.4;18.4 Measurement of the Mechanical Properties of Nanostructures;351
26.4.1;18.4.1 Nanoscratch Testing;351
26.4.2;18.4.2 Nanohardness Test;351
26.5;18.5 Conclusions;352
26.6;References;353
27;19 Nanoparticulate Drug Delivery Systems for Oral Cancer Treatment;358
27.1;19.1 Introduction;358
27.2;19.2 Cancer Treatment Techniques;359
27.3;19.3 Mechanism of Action of Chemotherapeutic Agents;360
27.3.1;19.3.1 Prevention of Synthesis of Pre-DNA Molecule Building Blocks;360
27.3.2;19.3.2 Chemical Damage of DNA in the Cell Nuclei;360
27.4;19.4 Oral Cancer;360
27.5;19.5 TNM Classification of Tumors;361
27.6;19.6 Management of Oral Cancer;361
27.7;19.7 Nanoparticulate-Based Drug Delivery in Cancer Treatment;363
27.7.1;19.7.1 Gold Nanoparticles for Anticarcinogenic Drug Delivery;364
27.7.2;19.7.2 Liposomes in Oral Cancer Treatment;365
27.7.3;19.7.3 Magnetic Nanoparticles in Oral Cancer Treatment;367
27.7.4;19.7.4 Polymeric Micelles as Drug Delivery Systems;367
27.8;19.8 Conclusions;368
27.9;References;368
28;20 Carbon Nanotubes in Cancer Therapy and Drug Delivery;372
28.1;20.1 Introduction;372
28.2;20.2 Cellular Uptake of CNTs;374
28.3;20.3 CNTs as Carriers for Drug, Gene, and Protein;375
28.3.1;20.3.1 CNTs as Carriers of Anticancer Molecules;375
28.3.2;20.3.2 CNTs as Carriers of Immunoactive Compounds, Proteins, and Genetic Materials;378
28.3.3;20.3.3 CNTs as Carriers for Antimicrobial Molecules;382
28.3.4;20.3.4 Photothermal Therapy of Cancer Using CNTs;382
28.4;20.4 CNTs for Oral Cancer Therapy;383
28.5;20.5 Conclusions;384
28.6;References;385
29;21 Nanodiagnostics in Microbiology and Dentistry;390
29.1;21.1 Introduction;391
29.2;21.2 Nanomaterials;392
29.2.1;21.2.1 Applications of Nanomaterials;392
29.2.1.1;21.2.1.1 Sunscreens and Cosmetics;392
29.2.1.2;21.2.1.2 Composites;392
29.2.1.3;21.2.1.3 Clays;392
29.2.1.4;21.2.1.4 Coatings and Surfaces;392
29.2.1.5;21.2.1.5 Tougher and Harder Cutting Tools;393
29.3;21.3 Biomedical Applications of Nanotechnology and its Limitations;393
29.4;21.4 Nanotechnology Applications in Drug Delivery Systems, Nanodiagnostics, and Various Other Fields;393
29.4.1;21.4.1 Drug Delivery System;393
29.4.1.1;21.4.1.1 Nanobots and its Uses;393
29.4.1.2;21.4.1.2 Use of Nanorattles;394
29.4.2;21.4.2 Nanodiagnostics and Disease Prevention;394
29.4.2.1;21.4.2.1 Biosensors;394
29.4.2.2;21.4.2.2 Diagnosis Using Nanobots;395
29.4.2.3;21.4.2.3 Quantum Dots;395
29.4.2.4;21.4.2.4 Regenerative Medicine;396
29.4.3;21.4.3 Disease Prevention;396
29.4.3.1;21.4.3.1 Cardiovascular Interventions;396
29.4.3.2;21.4.3.2 Nanoparticles and the Blood–Brain Barrier: As Treatment Opportunity;396
29.4.3.3;21.4.3.3 Tissue Reconstruction;397
29.4.3.4;21.4.3.4 Medical Tools;397
29.4.4;21.4.4 Other Applications;397
29.4.4.1;21.4.4.1 Treatment of Injured Nerves;397
29.4.4.2;21.4.4.2 Nanocapsules;398
29.4.4.3;21.4.4.3 Nanotubes;398
29.4.4.4;21.4.4.4 Nanosomes;399
29.4.4.5;21.4.4.5 Nanowires;399
29.4.4.6;21.4.4.6 Needle-Free, Painless Vaccinations with Nanopatches;399
29.4.4.7;21.4.4.7 Nanomagnets Remove Pathogens from Blood;400
29.4.4.8;21.4.4.8 Nanocrystalline Silver;400
29.4.4.9;21.4.4.9 Nanospheres;401
29.5;21.5 Contribution of Microbiology to Nanotechnology;401
29.6;21.6 AFM Imaging of Microorganisms;402
29.6.1;21.6.1 Yeast;402
29.6.2;21.6.2 Bacteria;403
29.6.3;21.6.3 AFM Study of the Structure–Function Relationship of the Biofilm-Forming Bacterium Streptococcus mutans;403
29.6.4;21.6.4 Viruses;405
29.7;21.7 Nanoplasmonic Sensors Detecting Live Viruses;406
29.8;21.8 Nanodentistry;407
29.8.1;21.8.1 The Impact of Nanotechnology;407
29.8.1.1;21.8.1.1 Dynamic View of Dental Tissues;408
29.8.1.2;21.8.1.2 What Are We Really Bonding to?;409
29.8.1.3;21.8.1.3 “Small Is Beautiful” of Dental Science: Small Structures, Great Strength;409
29.8.1.4;21.8.1.4 Biofilm Formation and Treatment;410
29.8.2;21.8.2 Nanotechnology in Periodontics;411
29.8.2.1;21.8.2.1 Local Anesthesia and Hypersensitivity Cure;411
29.8.2.2;21.8.2.2 Natural Tooth Maintenance and Repair;411
29.8.2.3;21.8.2.3 Nanorobotic Dentifrice (Dentifrobots);412
29.9;21.9 Conclusions;412
29.10;References;412
30;Index;416


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.