E-Book, Englisch, 802 Seiten, Web PDF
Stuart Progress in Refrigeration Science and Technology
1. Auflage 2014
ISBN: 978-1-4832-2360-5
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Proceedings of the XIth International Congress of Refrigeration, Munich, 1963
E-Book, Englisch, 802 Seiten, Web PDF
ISBN: 978-1-4832-2360-5
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Dr. Sam Stuart is a physiotherapist and a research Fellow within the Balance Disorders Laboratory, OHSU. His work focuses on vision, cognition and gait in neurological disorders, examining how technology-based interventions influence these factors. He has published extensively in world leading clinical and engineering journals focusing on a broad range of activities such as real-world data analytics, algorithm development for wearable technology and provided expert opinion on technology for concussion assessment for robust player management. He is currently a guest editor for special issues (sports medicine and transcranial direct current stimulation for motor rehabilitation) within Physiological Measurement and Journal of NeuroEngineering and Rehabilitation, respectively.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Progress in Refrigeration Science and Technology;4
3;Copyright Page;5
4;Table of Contents;10
5;Foreword;6
6;Preface;8
7;Volume I;9
8;Introduction;12
9;OPENING OF CONGRESS;12
10;OTHER ACTIVITIES OF THE CONGRESS;25
11;THE INTERNATIONAL INSTITUTE OF REFRIGERATION;25
12;CLOSING CEREMONY;26
13;Officers of the Xlth International Congress of Refrigeration Personnalités du XIe Congrès International du Froid;32
14;International Institute of Refrigeration — Officers Institut International du Froid Personnalités;33
15;Sponsor Organizations Organisations Donatrices;36
16;Organizations Providing Gifts Organisations ayant présenté des cadeaux;36
17;Part I: Plenary Meetings;38
17.1;Session
1: Technological Advances Using Very Low Temperatures;40
17.1.1;Chapter 1. Technological Applications of Very Low Temperatures;40
17.1.1.1;ROCKET FUELS;40
17.1.1.2;CRYOPUMPING: SPACE SIMULATION;41
17.1.1.3;CRYOGENIC PUMPING : WIND TUNNELS;41
17.1.1.4;BUBBLE CHAMBERS;41
17.1.1.5;HEAT AND VIBRATION;42
17.1.1.6;INFRA-RED DETECTORS;42
17.1.1.7;COMMUNICATIONS;43
17.1.1.8;STUDY OF METALS;43
17.1.1.9;QUANTUM EFFECTS;43
17.1.1.10;THE LOWEST TEMPERATURES;44
17.1.1.11;REFERENCES;44
17.1.2;Chapter 2. Applications of Superconductivity;46
17.1.2.1;ACKNOWLEDGMENT;49
17.1.2.2;REFERENCES;49
17.1.2.3;SUMMARY OF THE DISCUSSION (Papers P–3 + P–11);49
17.2;Session
2: Peltier Effect;52
17.2.1;Chapter 3. Concepts of Thermoelectric Refrigeration;52
17.2.1.1;PROGRESS IN REFRIGERATION;53
17.2.1.2;THE THERMOCOUPLE;53
17.2.1.3;THEORY OF A THERMOELECTRIC REFRIGERATOR;56
17.2.1.4;APPLICATION;58
17.2.2;Chapter 4. The Practical Use of Thermoelectric Refrigeration;60
17.2.2.1;EFFICIENCY CONSIDERATIONS;62
17.2.2.2;CHARACTERISTIC FEATURES;62
17.2.2.3;AIR COOLED THERMOELECTRIC DEVICES;63
17.2.2.4;CONTROLS;63
17.2.2.5;HEAT DISSIPATION;63
17.2.2.6;HEAT TRANSFER CHAIN, TEMPERATURE DROPS;63
17.2.2.7;CERAMIC PACKAGE UNITS;64
17.2.2.8;APPLICATIONS;64
17.2.2.9;ACKNOWLEDGMENT;71
17.2.2.10;SUMMARY OF THE DISCUSSION (Papers P–8 + P–7);71
17.3;Session 3: Energy for Refrigeration in Coming Years;76
17.3.1;Chapter 5.
Energy for Refrigeration, Present and Future;76
17.3.1.1;SOLID FUELS;76
17.3.1.2;LIQUID AND GASEOUS FUELS;77
17.3.1.3;SOLAR ENERGY;78
17.3.1.4;COMPRESSION REFRIGERATION;78
17.3.1.5;ABSORPTION REFRIGERATION;80
17.3.1.6;THERMOELECTRIC PROCESSES;81
17.3.1.7;FUEL CELLS;82
17.3.1.8;REFERENCES;84
17.3.1.9;DISCUSSION;84
17.4;Session 4:
Time-Temperature-Tolerance for Frozen Foods;86
17.4.1;Chapter 6.
Frozen Foods - Recent Advances in Science and Technology;86
17.4.1.1;INTRODUCTION;86
17.4.1.2;RAW MATERIAL CHARACTERISTICS;87
17.4.1.3;PROCESSING;87
17.4.1.4;PACKAGING;89
17.4.1.5;TIME AND TEMPERATURE;90
17.4.1.6;FUTURE TRENDS;92
17.4.2;Chapter 7. Factors Affecting the Keeping Quality of Frozen Foods;94
17.4.2.1;INTRODUCTION;94
17.4.2.2;THE TIME — TEMPERATURE RELATIONSHIP;94
17.4.2.3;METHODS OF DETERMINATION OF LOSS IN QUALITY;96
17.4.2.4;DETERMINATION OF "FIRST DETECTABLE DIFFERENCE";96
17.4.2.5;RELATING "FIRST DETECTABLE DIFFERENCE" TO CONSUMER ACCEPTANCE;97
17.4.2.6;DIFFERENCES IN STORAGE LIFE AS RELATED TO PRODUCTS, PROCESSING, AND PACKAGING;100
17.4.2.7;CONCLUSION;101
17.4.2.8;SUMMARY OF THE DISCUSSION (Papers P-2 + P-9);101
17.5;Session 5: Freeze-Drying;104
17.5.1;Chapter 8. Basic Principles of Lyophilization (Freeze-Drying);104
17.5.1.1;INTRODUCTION;104
17.5.1.2;I — THE RANGE OF THE MAIN APPLICATIONS OF FREEZE-DRYING;105
17.5.1.3;II — THE DIFFERENT STAGES OF THE FREEZE-DRYING PROCESS;106
17.5.1.4;REFERENCES;113
17.5.2;Chapter 9. Freeze-Drying in Biology;116
17.5.2.1;FREEZE-DRYING IN BIOLOGY;116
17.5.2.2;THE FREEZE-DRYING OF BIOLOGICAL SOLUTIONS;117
17.5.2.3;FREEZE-DRYING OF TISSUES;118
17.5.2.4;FREEZE-DRYING OF LIVING ORGANISMS;119
17.5.2.5;REFERENCES;120
17.5.3;Chapter 10.Freeze Drying of Foodstuffs;122
17.5.3.1;INTRODUCTION;122
17.5.3.2;RAW MATERIALS;122
17.5.3.3;PROCESSING PARAMETERS;123
17.5.3.4;FINISHED PRODUCT SPECIFICATIONS;125
17.5.3.5;PACKAGING AND STORAGE CONDITIONS;125
17.5.3.6;REHYDRATION;126
17.5.3.7;THE FUTURE;126
17.5.3.8;BIBLIOGRAPHY;126
17.5.4;Chapter 11. Engineering Problems and Economical Aspects of Freeze-Drying;128
17.5.4.1;SUMMARY OF THE DISCUSSION (Papers P-6, P-55 P-4, P-1);135
17.5.4.2;PACKAGING AND STORAGE OF THE FREEZE-DRIED MATERIAL;137
17.5.4.3;THERMODYNAMIC PROBLEMS CONCERNING THE FREEZE-DRYING PROCESS;138
18;Part II: Commission 1 Scientific problems of low temperature physics and thermodynamics. Cryogenic engineering;140
18.1;Session 6:
Liquefaction;142
18.1.1;Chapter 12.
Cryogenics and Space Technology;142
18.1.1.1;PROPERTIES OF PARAHYDROGEN;142
18.1.1.2;REFERENCES;146
18.1.2;Chapter 13. The NBS* Cryogenic Data Center**;147
18.1.2.1;DISCUSSION;150
18.1.3;Chapter 14. Liquefaction of Hydrogen and Helium for Nuclear Applications;152
18.1.3.1;(1) INTRODUCTION;152
18.1.3.2;(2) BUBBLE CHAMBER;152
18.1.3.3;(3) REFRIGERATION PLANT FOR COLD NEUTRON SOURCE;155
18.1.3.4;(4) FURTHER OUTLOOK;156
18.1.3.5;DISCUSSION;156
18.1.4;Chapter 15. A Simple Cooling System with a Cryogenic Pump;158
18.1.4.1;ACKNOWLEDGEMENT;159
18.1.5;Chapter 16. Helium Refrigerator for the Production of Cold at Temperatures down to 2.5° K;160
18.1.5.1;INTRODUCTION;160
18.1.5.2;FUNDAMENTALS OF THE PROCEDURE;161
18.1.5.3;A) REFRIGERATOR OPERATION;162
18.1.5.4;B) LIQUEFIER OPERATION;163
18.1.5.5;DESIGN PRINCIPLES;163
18.1.5.6;DISCUSSION;166
18.1.6;Chapter 17. A Miniature Helium Turbo-Expander for Cryogenic Refrigeration Systems;168
18.1.6.1;INDRODUCTION;168
18.1.6.2;DESIGN PHILOSOPHY;169
18.1.6.3;MECHANICAL DETAILS;169
18.1.6.4;TESTS;170
18.1.6.5;CONCLUDING REMARKS;171
18.1.6.6;REFERENCES;172
18.1.6.7;DISCUSSION;172
18.1.7;Chapter 18. Utilization of a Combined Expansion Cycle in Liquid Air Separating Installations;174
18.1.7.1;REFERENCES;177
18.1.8;Chapter 19. Purification Method for Obtaining Very Pure Hydrogen at High Pressure;178
18.1.8.1;INTRODUCTION;178
18.1.8.2;1. PURIFICATION OF NORMAL HYDROGEN;178
18.1.8.3;2. DETERMINATION OF THE DEGREE OF PURITY;180
18.1.8.4;3. SOME RESULTS OF PURIFICATION OBTAINED WITH THIS METHOD AND APPARATUS;181
18.1.8.5;REFERENCES;181
18.2;Session 7:
Applications to Nuclear Physics;182
18.2.1;Chapter 20.
Cryogenic Technology in the Nuclear Rocket Program;182
18.2.1.1;ACKNOWLEDGEMENT;187
18.2.1.2;REFERENCES;187
18.2.2;Chapter 21. Les problèmes techniques soulevés par les irradiations neutroniques au dessous de 30° K;188
18.2.2.1;1 - IRRADIATIONS A 28° K;188
18.2.2.2;2 - IRRADIATIONS A 5°K;191
18.2.2.3;REFERENCES;193
18.2.2.4;SUMMARY OF THE DISCUSSION (Papers I–18 and I–10);193
18.2.3;Chapter 22.
A Metallic Helium Cryostat for Double Resonance Experiments;196
18.2.3.1;1. THE DEWAR;196
18.2.3.2;2. THE LOW TEMPERATURE PART OF THE DOUBLE RESONANCE APPARATUS;197
18.2.3.3;ACKNOWLEDGMENTS;199
18.2.3.4;REFERENCES;199
18.2.4;Chapter 23.
Analyse thermique en dessous de 300° K de graphites irradiés aux neutrons à basse température;200
18.2.4.1;1 - EXECUTION DES MESURES D'ENERGIE EMMAGASINEE DEPUIS 80° K;201
18.2.4.2;2 - RESULTATS EXPERIMENTAUX;202
18.2.4.3;BIBLIOGRAPHIE;204
18.2.5;Chapter 24. Paramagnetic Resonance in y-Irradiated Donetz Coal;206
18.2.5.1;1. INTRODUCTION;206
18.2.5.2;2. DESIGN OF THE EXPERIMENTAL ARRANGEMENT;206
18.2.5.3;3. PRELIMINARY RESULTS;207
18.2.5.4;4. PROSPECTS;207
18.2.5.5;REFERENCES;208
18.2.6;Chapter 25. Lasting Changes in Properties of Metallic Materials Caused by Low Temperatures;210
18.2.6.1;SUMMARY;213
18.2.7;Chapter 26. Physical Aspects of Bubble Formation in Hydrogen and Thermodynamical Properties of Liquid n-Hydrogen;214
18.2.7.1;3. CONCLUSION;216
18.2.7.2;4. THERMODYNAMIC QUANTITIES OF LIQUID N HYDROGEN;216
18.2.7.3;REFERENCES;217
18.3;Session 8:
Thermodynamical Properties;218
18.3.1;Chapter 27.
The Logarithmic Temperature Scale;218
18.3.1.1;1. THE STRUCTURE OF THE LOGARITHMIC TEMPERATURE SCALE;218
18.3.1.2;2. LIMITATIONS IN THE USE OF THE LOGARITHMIC TEMPERATURE SCALE;220
18.3.1.3;REFERENCES;222
18.3.1.4;DISCUSSION;222
18.3.2;Chapter 28. The Correlation of Experimental Pressure-Density-Temperature and Specific Heat Data for Parahydrogen;224
18.3.2.1;INTRODUCTION;224
18.3.2.2;REPRESENTATION OF THE P-ñ-T DATA;224
18.3.2.3;CALCULATION OF THERMODYNAMIC FUNCTIONS;225
18.3.2.4;COMPARISON AND TESTS;226
18.3.2.5;REFERENCES;228
18.3.3;Chapter 29. The Velocity of Ultrasonic Pulses in Hydrogen Between 60 and 90°K as a Function of Pressure;230
18.3.3.1;SYNOPSIS;230
18.3.3.2;INTRODUCTION;230
18.3.3.3;RESULTS;230
18.3.3.4;REFERENCES;234
18.3.4;Chapter 30. Experimental Determination of HE for the System N2-H2 in the Gaseous State;236
18.3.4.1;REFERENCES;239
18.3.4.2;DISCUSSION;239
18.3.5;Chapter 31. Freezing Pressures of 8 He-4 He-Mixtures;240
18.3.5.1;THE RESULTS;240
18.3.5.2;PHASE-DIAGRAM;240
18.3.5.3;NEW DEVELOPMENTS;242
18.3.5.4;REFERENCES;242
18.3.5.5;DISCUSSION;243
18.3.6;Chapter 32. Flux Trapping and Flux Pumping with Solenoidal Superconductors;244
18.3.6.1;1. INTRODUCTION;244
18.3.6.2;2. APPARATUS AND TECHNIQUES;244
18.3.6.3;3. FLUX JUMPS AND FLUX CREEP;245
18.3.6.4;4. PROPERTIES OF SOME Nb-Sn PREPARATIONS;246
18.3.6.5;5. PERSISTENT MAGNETS;248
18.3.6.6;REFERENCES;249
18.3.6.7;DISCUSSION;249
18.3.7;Chapter 33. A Flux Pump for Generation of High Currents in a Superconducting Foil Magnet;252
18.3.7.1;REFERENCES;254
18.3.8;Chapter 34. Equipment for Producing Pulsed Magnetic Fields of High Intensity and Magneto-Resistance Measurements on Germanium;256
18.3.8.1;1. THE APPARATUS;256
18.3.8.2;2. THE COILS;256
18.3.8.3;3. MEASUREMENTS OF THE MAGNETORESISTANCE OF N-TYPE GERMANIUM;259
18.3.8.4;4. SECOND EQUIPMENT;260
18.3.8.5;CONCLUSION;262
18.3.9;Chapter 35.
The Kapitza Conductance of Lead;264
18.3.9.1;1. INTRODUCTION;264
18.3.9.2;2. SURFACE TREATMENTS AND RESULTS;264
18.3.9.3;3. DISCUSSION;267
18.3.9.4;REFERENCES;267
18.3.10;Chapter 36.
Basic Aspects for Superconducting Electric Machines;268
18.3.10.1;1. INTRODUCTION;268
18.3.10.2;2. THE INTERACTIONS BETWEEN SUPER-CURRENTS;268
18.3.10.3;REFERENCE;269
18.3.11;Chapter 37. Studies on Some Sulphide Phosphors in the Temperature Range from 4.2° to 77.4° K;270
18.3.11.1;1) THE APPARATUS AND THE MEASURING DEVICES;270
18.3.11.2;2) MEASUREMENTS AND RESULTS;271
18.3.11.3;3) DISCUSSION OF THE RESULTS;274
18.3.11.4;4. THE NATURE OF THE TRAPS;275
19;Part III: Commission 2 Transfer of heat. Thermal properties of materials. Instrumentation. Insulating materials;276
19.1;Session 9:
Problems of Insulation;278
19.1.1;Chapter 38. Heat Transfer by Natural Convection in Porous Insulants;278
19.1.1.1;INTRODUCTION;278
19.1.1.2;THE NATURE OF THE ENHANCED HEAT TRANSMISSION PROCESS;278
19.1.1.3;EXPERIMENTAL APPARATUS FOR CONVECTION STUDIES;278
19.1.1.4;THEORETICAL CALCULATION OF HEAT TRANSFER BY NATURAL CONVECTION;279
19.1.1.5;DISCUSSION OF RESULTS;281
19.1.1.6;REFERENCES;281
19.1.1.7;DISCUSSION;281
19.1.2;Chapter 39. Investigation of the Influence of Free Thermal Convection on Heat Transfer through Granular Material;284
19.1.2.1;INTRODUCTION;285
19.1.2.2;EXPERIMENTAL EQUIPMENT AND TEST PROGRAMME;285
19.1.2.3;TEST RESULTS;286
19.1.2.4;DETERMINATION OF PERMEABILITY;289
19.1.2.5;CONCLUSIONS;290
19.1.2.6;ACKNOWLEDGMENT;290
19.1.2.7;REFERENCES;290
19.1.2.8;DISCUSSION;290
19.1.3;Chapter 40. On the Thermal Conductivity of Powder Insulations;292
19.1.3.1;1. INTRODUCTION;292
19.1.3.2;2. THERMAL CONDUCTIVITY APPARATUS;292
19.1.3.3;3. SAMPLE PREPARATION;293
19.1.3.4;4. EXPERIMENTAL RESULTS;294
19.1.3.5;5. THEORETICAL AND EMPIRICAL CORRELATION OF DATA;296
19.1.3.6;6. CONCLUSIONS;298
19.1.3.7;5. ACKNOWLEDGMENTS;299
19.1.3.8;REFERENCES;299
19.1.3.9;DISCUSSION;299
19.1.4;Chapter 41.
The Influence of Gas-Filled Cells on Thermal Conductivity of Rigid Polyurethane Foam;302
19.1.4.1;REFERENCES;304
19.1.4.2;DISCUSSION;305
19.1.5;Chapter 42. Urethane Rigid Foams: Factors Affecting their Behaviour as Thermal Insulants;308
19.1.5.1;INTRODUCTION;308
19.1.5.2;MECHANISM OF HEAT TRANSFER;308
19.1.5.3;METHODS OF MEASUREMENT;309
19.1.5.4;THE INFLUENCE OF CELL SIZE ON K-VALUE;309
19.1.5.5;COMBINED EFFECT OF GAS CONTENT AND 7C-VALUE;311
19.1.5.6;AGEING;312
19.1.5.7;SOME PRACTICAL IMPLICATIONS;315
19.1.5.8;REFERENCES;316
19.1.5.9;DISCUSSION;316
19.1.6;Chapter 43.
Effectiveness of Evacuated Multiple-Layer Insulations;320
19.1.6.1;I. INTRODUCTION;320
19.1.6.2;II. MATERIAL SELECTION;320
19.1.6.3;III. TEST APPARATUS;321
19.1.6.4;IV. TEST PROCEDURE;323
19.1.6.5;V. DISCUSSION OF TEST RESULTS;323
19.1.6.6;REFERENCES;328
19.1.6.7;DISCUSSION;328
19.1.7;Chapter 44. Analysis of Economic Factors Affecting the Selection of Piping Insulation Thickness;330
19.1.7.1;APPENDIX;333
19.1.7.2;REFERENCES;335
19.2;Session 10:
Thermodynamics;338
19.2.1;Chapter 45.
A Non-Steady-State Method for the Measurement of the Thermal Conductivities of Liquid and Gases;338
19.2.1.1;REFERENCES;341
19.2.1.2;DISCUSSION;341
19.2.2;Chapter 46. Thermodynamic Properties of an Azeotropic Mixture of Freon-124 and Freon-C 318;344
19.2.3;Chapter 47.
Joule-Thomson Effect in Hydrogen-Methane Mixtures at Temperatures Between —35 and + 40°C;348
19.2.3.1;INTRODUCTION;348
19.2.3.2;APPARATUS;349
19.2.3.3;PRECISION OF MEASUREMENTS;350
19.2.3.4;PURITY OF GASES;351
19.2.3.5;RESULTS;352
19.2.3.6;REFERENCES;354
19.2.3.7;DISCUSSION;354
19.2.4;Chapter 48. On the Thermodynamics of the Cold-Air Cycle with Throttling;356
19.2.4.1;THE EXERGETIC EFFICIENCY;358
19.2.4.2;THE EXERGY LOSSES;360
19.2.4.3;THE EXERGY LOSS OF THE THROTTLING-PROCESS;360
19.2.4.4;THE EXERGY LOSS OF THE HEAT EXCHANGER;361
19.2.4.5;THE EXERGY LOSS OF THE COOLER;362
19.2.4.6;AN EXERGY FLOW DIAGRAM;363
19.2.4.7;REFERENCES;365
19.2.4.8;DISCUSSION;365
19.2.5;Chapter 49. Recovering of Cold by Evaporating Liquid Methane Employed in the Air Separation to Obtain Liquid Oxygen and Nitrogen;366
19.2.5.1;DISCUSSION;369
19.2.6;Chapter 50. Selection of Comparative Theoretical Cycle of Vapour Compression Refrigerating Plants;370
19.2.6.1;REFERENCES;373
19.2.6.2;DISCUSSION;373
19.3;Session 11: Heat Transfer;374
19.3.1;Chapter 51. Heat Transfer of Boiling Refrigerant 12 in Horizontal Tubes with Internal Flow Channel Guides;374
19.3.1.1;1. INTRODUCTION;374
19.3.1.2;2. EXPERIMENTAL PROCEDURE;375
19.3.1.3;3. RESULTS AND CONSIDERATIONS;376
19.3.1.4;CONCLUSIONS;381
19.3.1.5;NOMENCLATURE;381
19.3.1.6;REFERENCES;382
19.3.1.7;DISCUSSION;382
19.3.2;Chapter 52. Boiling Heat Transfer to a Cryogenic Fluid in Both Low and High Gravity Fields;384
19.3.2.1;INTRODUCTION;384
19.3.2.2;HEAT TRANSFER AT REDUCED AND NEAR ZERO GRAVITY;385
19.3.2.3;HEAT TRANSFER AT HIGH-GRAVITY;388
19.3.2.4;ACKNOWLEDGEMENTS;389
19.3.2.5;NOMENCLATURE;389
19.3.2.6;REFERENCES;390
19.3.2.7;DISCUSSION;391
19.3.3;Chapter 53.
Control and Economy of Air Cooled Refrigeration Condensers of Mean and High Outputs;394
19.3.4;Chapter 54. The Influence of Partial Pressure Difference and Supersaturation on the Frost Formation during the Cooling of Gas-Vapor-Mixtures in Counterflow Heat Exchangers;400
19.3.4.1;CONDENSATION IN THE CENTRE OF THE STREAM;401
19.3.4.2;FROST GROWTH ON THE WALLS;402
19.3.4.3;HEAT AND MASS TRANSFER;403
19.3.4.4;REFERENCES;404
19.3.4.5;DISCUSSION;405
19.3.5;Chapter 55. Influence of Oil on Heat Transfer of Boiling Freon 12 (Refrigerant 12) and Freon 22 (Refrigerant 22);406
19.3.5.1;APPARATUS;407
19.3.5.2;MEASUREMENTS;407
19.3.5.3;INFLUENCE OF FOAMING ON HEAT TRANSFER;412
19.3.5.4;EXPERIMENTS WITH ANOTHER OIL AND WITH FREON 22;415
19.3.5.5;ACKNOWLEDGMENT;415
19.3.5.6;REFERENCES;416
19.3.5.7;DISCUSSION;416
19.3.6;Chapter 56. Separation of Oil from Refrigerant Vapor;418
19.3.6.1;1. AIM OF THE EXPERIMENTAL WORK;418
19.3.6.2;2. RÉSUMÉ OF PREVIOUS WORK;418
19.3.6.3;3. DESCRIPTION OF THE TEST PLANT;418
19.3.6.4;4. DESCRIPTION OF THE TESTED OIL SEPARATORS;420
19.3.6.5;5. TEST PROCEDURE;420
19.3.6.6;6. RESULTS;421
19.3.6.7;7. CONCLUSIONS;422
19.3.6.8;ACKNOWLEDGEMENT;422
19.3.6.9;REFERENCES;422
19.3.6.10;DISCUSSION;422
19.3.7;Chapter 57. The Diffusional Penetration of Humidity in the Insulation of Pipes;426
19.3.7.1;REFERENCES;430
19.3.7.2;DISCUSSION;430
19.3.8;Chapter 58. On the Correlation of the Thermal Convection Coefficients;432
19.3.8.1;FREE CONVECTION;432
19.3.8.2;FORCED CONVECTION;435
19.3.8.3;BIBLIOGRAPHY;436
19.3.8.4;DISCUSSION;436
19.3.9;Chapter 59. Mesure en régime variable du coefficient d'échange thermique en surface;438
19.3.9.1;1 — SYMBOLES;438
19.3.9.2;2 — METHODE DIRECTE DE MESURE EN REGIME VARIABLE FONDEE SUR LA MESURE DU GRADIENT DE TEMPERATURE EN SURFACE;439
19.3.9.3;3 — METHODE INDIRECTE DE MESURE EN REGIME VARIABLE, FONDEE SUR LE REFROIDISSEMENT D'UN SOLIDE GEOMETRIQUE;440
19.3.9.4;4 — CONCLUSION;442
19.3.9.5;5 — BIBLIOGARPHIE;443
19.3.9.6;DISCUSSION;444
19.3.10;Chapter 60.
Sur la diffusivité thermique des matériaux non homogènes;446
19.3.10.1;METHODES D'ESSAI;446
19.3.10.2;RESULTATS;449
19.3.10.3;BIBLIOGRAPHIE;450
19.3.10.4;DISCUSSION;450
19.3.11;Chapter 61.
Determination of the Time Required for Contact Freezing of Whalemeat;452
19.3.11.1;INTRODUCTION;452
19.3.11.2;INDUCTION OF BASIC FORMULA;453
19.3.11.3;CONCLUSION;459
20;Part IV: Commission 3 Design, construction and operation of machinery for refrigerating and air conditioning plants;460
20.1;Session 12:
Piston and Turbo Compressors;462
20.1.1;Chapter 62. Direct Measuring of the Middle Indicated Pressure pmi of Compressors by Electronic Methods;462
20.1.1.1;REFERENCES;466
20.1.1.2;DISCUSSION;466
20.1.2;Chapter 63. Some Aspects of Pressure Pulse Attenuation for High Speed Reciprocating Compressors;468
20.1.2.1;REFERENCES;472
20.1.3;Chapter 64. Modern Measuring Technique for High-Speed Refrigerant Compressors;474
20.1.3.1;1. INTRODUCTION;474
20.1.3.2;2. MEASURING THE PRESSURE IN COMPRESSOR CYLINDERS;475
20.1.3.3;3. CALIBRATING THE PRESSURE PICKUPS DURING MEASUREMENT;475
20.1.3.4;4. MEASUREMENT OF VALVE PLATES LIFT;478
20.1.3.5;5. PRACTICAL APPLICATION OF THE MEASUREMENT TECHNIQUE;480
20.1.3.6;REFERENCES;481
20.1.4;Chapter 65. Study of Factors Influencing the Volumetric Efficiency of Reciprocating Compressors;482
20.1.4.1;1. INTRODUCTION;483
20.1.4.2;2. DESCRIPTION OF TESTED COMPRESSORS;484
20.1.4.3;3. VOLUMETRIC EFFICIENCY ë AND LOSS (1 — X);485
20.1.4.4;4. EFFICIENCY Av AND LOSS (1 — Av);486
20.1.4.5;5. EFFICIENCY At AND LOSS (1 — At);487
20.1.4.6;6. EFFICIENCY Au AND LOSS (1 — Au);489
20.1.4.7;7. CONCLUSION AND EVALUATION OF RESULTS;489
20.1.4.8;8. CONCLUSION;491
20.1.4.9;REFERENCES;491
20.1.4.10;LITERATURE;491
20.1.5;Chapter 66. Problèmes de construction posés par une machine à un seul arbrecomportant à un bout une turbine à vapeur et à l'autre bout un compresseur centrifuge frigorifique à deux étages;492
20.1.5.1;ARCHITECTURE GENERALE DE LA MACHINE;492
20.1.5.2;COMPRESSEUR;493
20.1.5.3;CARTER CENTRAL, REDUCTEUR DE VITESSE;493
20.1.5.4;SOCLE;494
20.1.5.5;REGULATION;495
20.1.5.6;SECURITE;496
20.1.5.7;DISCUSSION;496
20.1.6;Chapter 67.
Ammonia Centrifugal Refrigeration Plants in Operation;498
20.1.6.1;REFERENCES;502
20.1.6.2;DISCUSSION;502
20.1.7;Chapter 68.
Influence des propriétés physiques des frigorigènes sur les conditions de fonctionnement des turbomachines;504
20.1.7.1;1. BASES THERMODYNAMIQUES GÉNÉRALES;504
20.1.7.2;2. DONNÉES DE FONCTIONNEMENT D'UNE TURBOMACHINE;507
20.1.7.3;3. SIMILITUDE D'ÉCOULEMENT LORS DE L'UTILISATION DE GAZ DIFFÉRENTS;510
20.1.7.4;4. SIMILITUDE DE L'ÉCOULEMENT POUR DIFFÉRENTS FRIGORIGÈNES;511
20.1.7.5;5. RÉSULTATS MESURÉS SUR DES MACHINES GÉOMÉTRIQUEMENT SEMBLABLES;516
20.1.7.6;BIBLIOGRAPHIE;516
20.1.8;Chapter 69. Etude expérimentale sur les turbo-compresseurs frigorifiques monoroue;518
20.1.8.1;NOTATIONS UTILISEES;523
20.1.8.2;DISCUSSION;523
20.1.9;Chapter 70. Design of Mixed Flow Impellers Operating at High Mach Numbers for Industrial Centrifugal Refrigeration Equipment;524
20.1.10;Chapter 71. Operative Properties of Mixed Flow Impellers of High Mach Numbers Destined for Industrial Turbo-Compressor Refrigeration Equipment;532
20.2;Session 13:
Miscellaneous Questions;534
20.2.1;Chapter 72. Conditions of Cavitation in Liquid Pumps for Refrigerant Recirculation;534
20.2.1.1;INTRODUCTION;534
20.2.1.2;THEORY;535
20.2.1.3;EXPERIMENTAL PROCEDURE;540
20.2.1.4;RESULTS;542
20.2.1.5;CONSIDERATIONS IN SYSTEM DESIGN;545
20.2.1.6;ACKNOWLEDGMENTS;546
20.2.1.7;REFERENCES;546
20.2.1.8;DISCUSSION;546
20.2.2;Chapter 73. Liquid Content in Evaporator Pipes;550
20.2.2.1;DISCUSSION;553
20.2.3;Chapter 74. The Problem of Refrigerant Return Line Calculations in Pump Recirculation Systems;556
20.2.3.1;EXAMPLE OF COMPUTATION;560
20.2.3.2;REFERENCES;560
20.2.3.3;DISCUSSION;561
20.2.4;Chapter 75.
Conception des évaporateurs d'ammoniac des grands entrepôts frigorifiques polyvalents;562
20.2.4.1;11 RECHERCHE DU RENDEMENT MAXIMAL;562
20.2.4.2;12 — MODE D'ALIMENTATION;562
20.2.4.3;13 — STABILITÉ DE FONCTIONNEMENT ET PRÉCAUTIONS CONTRE LES TRANSFERTS DE CHARGE D'AMMONIAC;563
20.2.4.4;21 — SYSTÈME A REGORGEMENT NATUREL;563
20.2.4.5;22 - SYSTÈME A CIRCULATION PAR POMPE;564
20.2.4.6;23 — SYSTÈME MIXTE D'ALIMENTATION;566
20.2.4.7;III — CONCLUSION;567
20.2.4.8;REFERENCES;568
20.2.4.9;DISKUSSION;568
20.2.5;Chapter 76.
Utilization of Steel Stamp-Welded Panels for Heat Exchanging Apparatus in Refrigerating Plants;570
20.2.5.1;PACKAGED PANEL SUBCOOLERS;572
20.2.5.2;HOLD-OVER APPARATUS;573
20.2.5.3;CONCLUSION;574
20.2.6;Chapter 77.
Some Practical Tests on the Efficiency of Extended Surface Air Coolers;576
20.2.6.1;INTRODUCTION;576
20.2.6.2;AIR COOLERS TESTED;576
20.2.6.3;TEST APPARATUS;576
20.2.6.4;TEST RESULTS;578
20.2.6.5;OPTIMAL DESIGN OF REFRIGERANT DISTRIBUTION;580
20.2.6.6;CONCLUSION;581
20.2.6.7;ACKNOWLEDGEMENTS;581
20.2.6.8;DISCUSSION;584
20.2.7;Chapter 78. Determination of Cooling Air Optimum Velocity, Arrangement and Area of Air-Cooled Condenser Surface;586
20.2.8;Chapter 79. Construction des condenseurs évaporatifs et des condenseurs à l'air pour les installations frigorifiques lourdes;592
20.2.8.1;I. MESURE DU VOLUME RELATIF D'AIR;592
20.2.8.2;II. MESURE DU COEFFICIENT DE TRANSMISSION DE CHALEUR;593
20.2.8.3;III. CONSTRUCTION DES CONDENSEURS A L'EAU;595
20.2.8.4;IV. CONSTRUCTION DES CONDENSEURS A L'AIR;595
20.2.8.5;V. CONDENSEURS CKD CHOCEN;596
20.2.9;Chapter 80.
Etudes comparatives des circuits de condensation frigorifique refroidis par réfrigérants atmosphériques ou par condenseurs à evaporation;598
20.2.9.1;SUMMARY;598
20.2.9.2;1 : INTRODUCTION;598
20.2.9.3;2 : ETUDES DES SOLUTIONS CLASSIQUES AVEC REFRIGERANT ATMOSPHERIQUE ET CONDENSEURS MULTITUBULAIRES;599
20.2.9.4;3 : ETUDE DE LA SOLUTION AVEC CONDENSEUR A EVAPORATION;601
20.2.9.5;4 : DEVELOPPEMENT ET PROGRES RECENTS DES DEUX SYSTEM ESCOMPARES;603
20.2.9.6;CONCLUSION;604
20.2.10;Chapter 81. Reciprocating and Turbo-Expanders for Low Temperature Refrigeration;606
20.2.10.1;INTRODUCTION;606
20.2.10.2;RECIPROCATING EXPANDERS;608
20.2.10.3;TURBO EXPANDERS;612
20.2.10.4;CONCLUSION;615
20.2.11;Chapter 82. Production du froid artificiel par la détente du gaz naturel;618
20.2.11.1;INTRODUCTION;618
20.2.11.2;LE NOUVEAU PROCÉDÉ;619
20.2.11.3;APPLICATION PRATIQUE;621
20.2.11.4;PROBLÈMES CONSTRUCTIFS;623
20.2.11.5;OBTENTION DE BASSES TEMPÉRATURES;624
20.2.12;Chapter 83. Design Problems of Supersonic Ejectors Operating as Booster Compressors in Refrigerating Systems;626
20.2.12.1;NOMENCLATURE;626
20.2.12.2;1. INTRODUCTION;627
20.2.12.3;2. THERMODYNAMIC AND GASDYNAMIC PROCESSES;627
20.2.12.4;3. EJECTION COEFFICIENT;629
20.2.12.5;4. ACCELERATION OF DRIVEN JET;630
20.2.12.6;5. DELIVERY CAPACITY;631
20.2.12.7;6. GEOMETRICAL SIZES;632
20.2.12.8;7. PRACTICAL HINTS;632
20.2.12.9;REFERENCES;634
20.2.12.10;DISCUSSION;635
20.2.13;Chapter 84. New Definitions Needed in Refrigeration;636
20.2.13.1;REFERENCES;637
20.3;Session 14:
Thermoelectric Refrigeration, Absorption;638
20.3.1;Chapter 85.
Performance of a Thermoelectric Refrigerator as a Function of Characteristic Parameters;638
20.3.1.1;EFFECT OF VARIATION OF PARAMETERS ON PERFORMANCE;643
20.3.1.2;REFERENCES;645
20.3.2;Chapter 86. Thermoelectric Refrigeration - Possibilities and Problems;646
20.3.2.1;DESIGN AND OPERATION REQUIREMENT FOR MAXIMUM EFFICIENCY;646
20.3.2.2;CHARACTERISTIC FEATURES;647
20.3.2.3;DESIGN PROBLEMS OF MODULES AND PACKAGE UNITS;648
20.3.2.4;APPLICATION PROBLEMS;650
20.3.2.5;COST OF SEMICONDUCTING MATERIAL;650
20.3.2.6;REFERENCES;651
20.3.3;Chapter 87. Thermoelectric Refrigeration and Prospects for its Wide Scale Technical Application;652
20.3.3.1;SUMMARY OF THE DISCUSSION (Papers 111-17, 111-22, 111-28);658
20.3.4;Chapter 88. Diagrams of Dimensionless Equations Determining Two Basic Working Regimes of Peltier Heat Pump;660
20.3.4.1;1. INTRODUCTION;660
20.3.4.2;2. ELEMENTARY DEFINITIONS;661
20.3.4.3;3. CALCULATION OF PARAMETERS OF COOLING ELEMENT;661
20.3.4.4;4. CONCLUSION;665
20.3.4.5;APPENDIX;665
20.3.5;Chapter 89. Transient Temperatures in a Thermoelectric Refrigerator Following a Step Change in Current;668
20.3.5.1;PART I. ANALYTICAL SOLUTION;668
20.3.5.2;PART II. EXPERIMENTAL INVESTIGATION;671
20.3.5.3;REFERENCES;678
20.3.6;Chapter 90. Come-Back of the Absorption Refrigerator?;680
20.3.6.1;COMPARISON OF THE COP OF THE CARNOT-CYCLES FOR COMPRESSORS AND ABSORBERS;681
20.3.6.2;COMPARISON OF THE EFFECTIVE COP FOR COMPRESSORS AND ABSORBERS;683
20.3.6.3;COMPARISON OF THE PERFORMANCES OF THE COMPRESSORS AND ABSORBERS;685
20.3.6.4;FURTHER CORRECTION FACTORS IN FAVOUR OF THE ABSORBER;686
20.3.6.5;THE FINAL COMPARISON OF THE TWO UNITS;687
20.3.6.6;THE COMPARISON OF TWO REFRIGERATORS;688
20.3.6.7;COMPARISON OF THE PRODUCTION-COSTS OF SUCH REFRIGERATORS;688
20.3.6.8;CONCLUSIONS;689
20.3.7;Chapter 91.
Analysis of Actual Processes in a Lithium Bromide Absorption Machine;690
20.3.7.1;REFERENCES;694
20.3.8;Chapter 92. L'emploi de la machine frigorifique à absorption comme « pompe à chaleur;696
20.3.8.1;BIBLIOGRAPHIE;702
20.3.8.2;SUMMARY OF THE DISCUSSION (Papers III-6 + III-41);702
20.3.8.3;The Feeding of an Ammonia Absorption Refrigeration System Rectifier with Liquid from the Evaporator;704
20.3.9;Chapter 93. A Method for Determining Performance Characteristics of Absorption Refrigeration Systems;710
20.3.9.1;THERMAL COMPRESSOR AND EVAPORATOR;711
20.3.9.2;CONDENSER;714
20.3.9.3;SYSTEM PERFORMANCE;715
20.3.10;Chapter 94. New Pumping Method in Absorption Refrigeration;718
20.4;Session 15: Refrigerants, Automation;722
20.4.1;Chapter 95.
Material Stabilities in Vapor Compression Refrigeration Systems;722
20.4.1.1;INTRODUCTION;722
20.4.1.2;EXAMPLES OF TYPICAL DEGRADATION REACTIONS;723
20.4.1.3;CONCLUSIONS;727
20.4.1.4;REFERENCES;728
20.4.2;Chapter 96. Utilization of Refrigerant Mixtures in Refrigerating Compression Machines;730
20.4.3;Chapter 97. The Lubrication of Refrigerant 22 Machines;734
20.4.3.1;INTRODUCTION;734
20.4.3.2;MISCIBILITY OF MINERAL OILS WITH R 22;734
20.4.3.3;MISCIBILITY OF AROMATIC OILS WITH R 22;736
20.4.3.4;PERFORMANCE OF AROMATIC OILS IN REFRIGERATOR COMPRESSORS;736
20.4.3.5;SERVICE EXPERIENCE WITH OIL I;738
20.4.3.6;REFERENCES;738
20.4.3.7;DISCUSSION;738
20.4.4;Chapter 98. Examinations on the Behaviour of Plastics in Hermetic Units;740
20.4.4.1;INTRODUCTION;740
20.4.4.2;MATERIALS TESTED AND PROCESSING;740
20.4.4.3;WATER CONTENT AND DRYING;742
20.4.4.4;TEMPERATURE LIMIT;742
20.4.4.5;SOLVENT RESISTANCE;742
20.4.4.6;LIFE-TEST RESULTS;743
20.4.4.7;REFERENCES;745
20.4.5;Chapter 99. Effect of Heat Exchange between Capillary Tube and Suction Line on the Performance of Small Hermetic Compressor Systems;748
20.4.5.1;BACKGROUND FOR THE INVESTIGATION;748
20.4.5.2;DESCRIPTION OF THE TESTING ARRANGEMENT;748
20.4.5.3;THE INFLUENCE OF THE HEAT EXCHANGE ON THE REFRIGERATING CAPACITY;749
20.4.5.4;THE INFLUENCE OF THE HEAT EXCHANGE ON THE MOTOR TEMPERATURE;751
20.4.5.5;CONCLUSION;751
20.4.5.6;DISCUSSION;752
20.4.6;Chapter 100.
A Special Method for the Measurement of Capacities and Characteristics of Thermostatic Expansion Valves;754
20.4.7;Chapter 101. Some Experiments on the Discharge Coefficients and Characteristics of Ammonia Thermostatic Expansion Valves;760
20.4.8;Chapter 102.
Liquid Control for High Evaporator Efficiency;764
20.4.8.1;INTRODUCTION;764
20.4.8.2;COOLERS WITH THERMOSTATIC EXPANSION VALVES;766
20.4.8.3;FLOODED EVAPORATORS WITH SELF CIRCULATION OF THE LIQUID;766
20.4.8.4;EVAPORATORS WITH FORCED CIRCULATION OF LIQUID REFRIGERANT;768
20.4.8.5;CONCLUSION;769
20.4.8.6;REFERENCES;770
20.4.9;Chapter 103.
Report on Liquid Level Control of Flooded Evaporator of Refrigerating System by Automatic Level Controller;772
20.4.9.1;1. INTRODUCTION;772
20.4.9.2;2. THERMO-ELECTRICAL CONTROLLING;772
20.4.9.3;3. BRIEF EXPLANATION OF OUR EXPERIMENTAL PLANT;773
20.4.9.4;4. RECORDS OF TEMPERATURE MEASURED AT THE EXPERIMENTS;774
20.4.9.5;5. CONCLUSION;777
20.4.9.6;SUMMARY OF THE DISCUSSION (PAPERS 111-39 + III-21);777
20.4.10;Chapter 104. Introduction commune pour les deux rapports suivantes (III-36 et -37);780
20.4.11;Chapter 105. Régulation de la production du froid dans les installations frigorifiques;782
20.4.11.1;I - PRINCIPE DE LA REGULATION DE PRODUCTION DU FROID D'UNE INSTALLATION FRIGORIFIQUE (entrepôt);782
20.4.11.2;II - SCHEMA FONCTIONNEL DE LA BOUCLE DE REGULATION;783
20.4.11.3;III - ETUDE DE LA STABILITE ET DE LA PRECISION DE LA REGULATION;787
20.4.11.4;IV - CONCLUSION;790
20.4.12;Chapter 106. Les automatismes a séquences dans la production et l'utilisation du froid;792
20.4.12.1;TOUS CES CONTACTS SONT INDEPENDANTS LES UNS DES AUTRES;797




