Stroock | Essentials of Integration Theory for Analysis | Buch | 978-3-030-58480-1 | sack.de

Buch, Englisch, Band 262, 285 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 464 g

Reihe: Graduate Texts in Mathematics

Stroock

Essentials of Integration Theory for Analysis

Buch, Englisch, Band 262, 285 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 464 g

Reihe: Graduate Texts in Mathematics

ISBN: 978-3-030-58480-1
Verlag: Springer International Publishing


When the first edition of this textbook published in 2011, it constituted a substantial revision of the best-selling Birkhäuser title by the same author, A Concise Introduction to the Theory of Integration. Appropriate as a primary text for a one-semester graduate course in integration theory, this GTM is also useful for independent study. A complete solutions manual is available for instructors who adopt the text for their courses. This second edition has been revised as follows: §2.2.5 and §8.3 have been substantially reworked. New topics have been added. As an application of the material about Hermite functions in §7.3.2, the author has added a brief introduction to Schwartz's theory of tempered distributions in §7.3.4. Section §7.4 is entirely new and contains applications, including the Central Limit Theorem, of Fourier analysis to measures. Related to this are subsections §8.2.5 and §8.2.6, where Lévy's Continuity Theorem and Bochner's characterization of the Fourier transforms of Borel probability on R are proven. Subsection 8.1.2 is new and contains a proof of the Hahn Decomposition Theorem. Finally, there are several new exercises, some covering material from the original edition and others based on newly added material.


Stroock Essentials of Integration Theory for Analysis jetzt bestellen!

Zielgruppe


Graduate


Autoren/Hrsg.


Weitere Infos & Material


Preface.- Notation.- 1. The Classical Theory.-2. Measures. -3. Lebesgue Integration.-4. Products of Measures.-5. Changes of Variable.-6. Basic Inequalities and Lebesgue Spaces.-7. Hilbert Space and Elements of Fourier Analysis.-8. Radon–Nikodym, Hahn, Daniell Integration, and Carathéodory- Index.


Daniel W. Stroock is Emeritus professor of mathematics at MIT. He is a respected mathematician in the areas of analysis, probability theory and stochastic processes. Prof. Stroock has had an active career in both the research and education.   From 2002 until 2006, he was the first holder of the second Simons Professorship of Mathematics.  In addition, he has held several administrative posts, some within the university and others outside.  In 1996, the AMS awarded him together with his former colleague jointly S.R.S. Varadhan the Leroy P. Steele Prize for seminal contributions to research in stochastic processes. Finally, he is a member of both the American Academy of Arts and Sciences, the National Academy of Sciences and a foreign member of the Polish Academy of Arts and Sciences.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.