Stroo / Ward | In Situ Bioremediation of Perchlorate in Groundwater | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 248 Seiten

Reihe: SERDP ESTCP Environmental Remediation Technology

Stroo / Ward In Situ Bioremediation of Perchlorate in Groundwater


1. Auflage 2008
ISBN: 978-0-387-84921-8
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 248 Seiten

Reihe: SERDP ESTCP Environmental Remediation Technology

ISBN: 978-0-387-84921-8
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



In the late 1970s and early 1980s, our nation began to grapple with the legacy of past disposal practices for toxic chemicals. With the passage in 1980 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), commonly known as Superfund, it became the law of the land to remediate these sites. The U. S. Department of Defense (DoD), the nation's largest industrial organization, also recognized that it too had a legacy of contaminated sites. Historic operations at Army, Navy, Air Force, and Marine Corps facilities, ranges, manufacturing sites, shipyards, and depots had resulted in widespread contamination of soil, groundwater, and sediment. While Superfund began in 1980 to focus on remediation of heavily contaminated sites largely abandoned or neglected by the private sector, the DoD had already initiated its Installation Restoration Program in the mid 1970s. In 1984, the DoD began the Defense Environmental Restoration Program (DERP) for contaminated site assessment and remediation. Two years later, the U. S. Congress codified the DERP and directed the Secretary of Defense to carry out a concurrent program of research, development, and demonstration of innovative remediation technologies. As chronicled in the 1994 National Research Council report, 'Ranking Hazardous-Waste Sites for Remedial Action', our early estimates on the cost and suitability of existing technologies for cleaning up contaminated sites were wildly optimistic. Original estimates, in 1980, projected an average Superfund cleanup cost of a mere $3.

H. F. Stroo - Dr. Stroo is a Principal Technical Advisor with HydroGeoLogic, Inc. He has a Ph.D. in Soil Science from Cornell University, and over 20 years of experience in the assessment and remediation of contaminated soil and groundwater. He has provided technical support to SERDP/ESTCP in the development and evaluation of innovative remediation technologies for over 10 years, particularly in the advancement of in situ technologies. C. H. Ward - Dr. Ward has had a 41-year career in basic and applied research on chemical transport and fate in environmental media and remediation technology development for cleanup of fuel hydrocarbons and chlorinated compounds. He is a science and environmental technology consultant and advisor to government (EPA, DoD, DOE) and industry. He was the Director of the EPA-sponsored National Center for Ground Water Research for 18 years, the Superfund University Training Institute for 8 years, and the DoD-sponsored Advanced Applied (environmental) Technology Development Facility for 7 years. He is the Founding Chair of the Department of Environmental Science and Engineering at Rice University and has published over 200 scientific and technical papers and journal articles and 28 books and monographs on environmental remediation, remediation technology development, and sustainability. Dr. Ward is a registered professional engineer in the state of Texas and a Board Certified Environmental Engineer by the American Academy of Environmental Engineers

Stroo / Ward In Situ Bioremediation of Perchlorate in Groundwater jetzt bestellen!

Weitere Infos & Material


1;In SituBioremediation of Perchlorate in Groundwater;2
2;Series Title Page;3
3;Copyright Page;4
4;Preface;6
5;About The Editors;10
6;About The Authors;11
7;External Reviewers;17
8;Acronyms and Abbreviations;18
9;Unit Conversion Table;21
10;Glossary1;22
11;Table of Contents;29
12;List of Figures;35
13;List of Tables;38
14;Chapter 1;40
14.1;In Situ Bioremediation of Perchlorate In Groundwater: An Overview;40
14.1.1;1.1 Introduction;40
14.1.2;1.2 How Did Perchlorate Become Such A Problem?;41
14.1.2.1;1.2.1 Perchlorate Properties and Behavior in the Subsurface;41
14.1.2.2;1.2.2 Production and Disposal;42
14.1.2.2.1;1.2.2.1 History of Use;42
14.1.2.2.2;1.2.2.2 Disposal Practices;43
14.1.2.3;1.2.3 Regulatory History;43
14.1.2.4;1.2.4 Evolution of Analytical Capabilities;44
14.1.2.5;1.2.5 Evolution of Toxicological Understanding;45
14.1.2.5.1;1.2.5.1 Magnitude of the Problem;46
14.1.3;1.3 How Can In Situ Bioremediation Help Solve the Perchlorate Problem?;46
14.1.3.1;1.3.1 Treatment Technology Overview;46
14.1.3.2;1.3.2 Why Use In Situ Bioremediation?;48
14.1.4;References;49
15;Chapter 2;53
15.1;Development of In Situ Bioremediation Technologies for Perchlorate;53
15.1.1;2.1 Introduction;53
15.1.2;2.2 Early Discoveries;53
15.1.3;2.3 Analytical Methods and Pilot Programs;54
15.1.4;2.4 Ubiquitous Occurrence of Perchlorate Degraders;55
15.1.5;2.5 Field Demonstrations;56
15.1.6;2.6 Bioremediation Strategies;57
15.1.7;2.7 Remediation of Perchlorate in Soil-The New Challenge;59
15.1.8;2.8 The Challenges Ahead;62
15.1.9;Acknowledgements;63
15.1.10;References;64
16;Chapter 3;90
16.1;Principles of Perchlorate Treatment;90
16.1.1;3.1 Introduction;90
16.1.2;3.2 Abiotic Remediation Processes;90
16.1.2.1;3.2.1 Ion Exchange;90
16.1.2.1.1;3.2.1.1 Non-Selective Resins;91
16.1.2.1.2;3.2.1.2 Selective Resins;91
16.1.2.1.3;3.2.1.3 Advanced Regeneration Technologies;91
16.1.2.1.4;3.2.1.4 Activated Carbon;92
16.1.2.1.5;3.2.1.5 Potential In Situ Applications;93
16.1.2.2;3.2.2 Abiotic Reduction Technologies;93
16.1.2.2.1;3.2.2.1 Chemical Reduction;93
16.1.2.2.2;3.2.2.2 Electrochemical Reduction;94
16.1.2.2.3;3.2.2.3 Other Abiotic Technologies;95
16.1.2.3;3.2.3 Overview of Abiotic Processes;95
16.1.3;3.3 Biological Remediation Processes;95
16.1.3.1;3.3.1 General Characteristics of DPRB;96
16.1.3.2;3.3.2 Diversity of DPRB;97
16.1.3.3;3.3.3 Environmental Factors Controlling DPRB Activity;97
16.1.3.4;3.3.4 Summary;99
16.1.4;3.4 Challenges Associated with Microbial Perchlorate Reduction;100
16.1.4.1;3.4.1 Biofouling and Electron Donor Selection;100
16.1.4.1.1;3.4.1.1 Stimulation of Undesirable Organisms;100
16.1.4.1.2;3.4.1.2 Establishment of Nonproductive TEAPs;101
16.1.5;3.5 The Tools Available for Predicting and Monitoring Microbial Perchlorate Reduction;103
16.1.5.1;3.5.1 Most Probable Number Counts;104
16.1.5.2;3.5.2 Probes to Specific Groups of Perchlorate-Reducing Organisms;105
16.1.5.3;3.5.3 Biomarkers for all DPRB;105
16.1.5.4;3.5.4 Immunoprobes Specific for DPRB;106
16.1.5.5;3.5.5 Use of Stable Isotopes to Identify Perchlorate Source and Monitor Degradation;106
16.1.6;3.6 Enrichment, Isolation, and Maintenanceof Dprb;107
16.1.6.1;3.6.1 Direct Isolation;107
16.1.6.2;3.6.2 Culture Maintenance;108
16.1.7;3.7 Conclusions;108
16.1.8;References;109
17;Chapter 4;66
17.1;Perchlorate Sources, Source Identification and Analytical Methods;66
17.1.1;4.1 Introduction;66
17.1.2;4.2 Sources of Perchlorate;66
17.1.2.1;4.2.1 Anthropogenic Sources;67
17.1.2.1.1;4.2.1.1 Rocket Propellant;67
17.1.2.1.2;4.2.1.2 Road Flares;67
17.1.2.1.3;4.2.1.3 Fireworks;67
17.1.2.1.4;4.2.1.4 Blasting Agents and Explosives;68
17.1.2.1.5;4.2.1.5 Sodium Chlorate;69
17.1.2.1.6;4.2.1.6 Bleach (Hypochlorite);70
17.1.2.1.7;4.2.1.7 Perchloric Acid;71
17.1.2.2;4.2.2 Natural Sources of Perchlorate;71
17.1.2.2.1;4.2.2.1 Atmospheric Origin of Perchlorate;71
17.1.2.2.2;4.2.2.2 Chilean Nitrate;72
17.1.2.2.3;4.2.2.3 Other Natural Mineral Sources;72
17.1.3;4.3 Distinguishing Synthetic From Natural Perchlorate Using Stable Isotope Analysis;73
17.1.3.1;4.3.1 Stable Isotope Analysis;73
17.1.3.2;4.3.2 Stable Isotope Methods for Perchlorate;74
17.1.3.2.1;4.3.2.1 Sample Preparation and Analysis;74
17.1.3.2.2;4.3.2.2 Isotopic Results to Date;75
17.1.4;4.4 Analytical Methods for Perchlorate Analysis;79
17.1.4.1;4.4.1 DoD-Approved Analytical Methods;79
17.1.4.1.1;4.4.1.1 Usepa Methods 6850 (Hplc/Esi/Ms) and 6860 (Ic/Esi/Ms);79
17.1.4.1.2;4.4.1.2 Usepa Method 331.0-Liquid Chromatography Electrospray Ionization Mass Spectrometry;79
17.1.4.1.3;4.4.1.3 USEPA Method 332.0-Ion Chromatography with Suppressed Conductivity and Electrospray Ionization Mass Spectrometry;80
17.1.4.2;4.4.2 Other Analytical Methods for Perchlorate;81
17.1.4.2.1;4.4.2.1 USEPA Method 314.0-Ion Chromatography;82
17.1.4.2.2;4.4.2.2 USEPA Method 314.1-Inline Column Concentration/Matrix Elimination Ion Chromatography with Suppressed Conductivity Detection;83
17.1.4.2.3;4.4.2.3 USEPA Method 9058-Ion Chromatography with Chemical Suppression Conductivity Detection;83
17.1.5;4.5 Site Characterization For Perchlorate Treatment;84
17.1.6;4.6 Summary;85
17.1.7;References;85
18;Chapter 5;115
18.1;Alternatives For In Situ Bioremediation of Perchlorate;115
18.1.1;5.1 Introduction;115
18.1.2;5.2 Technology Selection Process;117
18.1.2.1;5.2.1 In Situ Bioremediation;117
18.1.2.2;5.2.2 Active Treatment;118
18.1.2.3;5.2.3 Semi-Passive Treatment;120
18.1.2.4;5.2.4 Passive Treatment;121
18.1.3;5.3 Decision Guidelines;121
18.1.3.1;5.3.1 Ability to Meet Management Objectives;122
18.1.3.1.1;5.3.1.1 Costs;122
18.1.3.1.2;5.3.1.2 Speed;123
18.1.3.1.3;5.3.1.3 Reliability;123
18.1.3.1.4;5.3.1.4 Disruption of Site Activities;123
18.1.3.1.5;5.3.1.5 Flexibility;124
18.1.3.2;5.3.2 Problematic Site Conditions;124
18.1.4;5.4 Summary;124
18.1.5;References;125
19;Chapter 6;127
19.1;Active Bioremediation;127
19.1.1;6.1 Background and General Approach;127
19.1.2;6.2 When to Consider an Active Treatment System;128
19.1.3;6.3 Treatment System Configurations;129
19.1.3.1;6.3.1 Groundwater Extraction and Reinjection (ER);129
19.1.3.2;6.3.2 Horizontal Flow Treatment Wells (HFTWs);130
19.1.4;6.4 System Applications;131
19.1.4.1;6.4.1 Biobarriers;131
19.1.4.2;6.4.2 Source Area Treatment;134
19.1.5;6.5 System Design, Operation and Monitoring;136
19.1.5.1;6.5.1 Site Assessment Needs;136
19.1.5.2;6.5.2 Modeling;137
19.1.5.2.1;6.5.2.1 Modeling Overview;137
19.1.5.2.2;6.5.2.2 Example of Model Application: HFTWs;139
19.1.5.3;6.5.3 Electron Donor;141
19.1.5.3.1;6.5.3.1 Microcosm Testing;141
19.1.5.3.2;6.5.3.2 Example of a Microcosm Test;142
19.1.5.3.3;6.5.3.3 Basis for Electron Donor Selection;143
19.1.5.4;6.5.4 Performance Monitoring;144
19.1.5.5;6.5.5 Operational Issues;147
19.1.5.5.1;6.5.5.1 Undesirable Geochemical Impacts;147
19.1.5.5.2;6.5.5.2 Biofouling;147
19.1.6;6.6 Case Study: Aerojet Area 20 Groundwater Extraction - Reinjection System;149
19.1.6.1;6.6.1 Site Description;149
19.1.6.2;6.6.2 Site Geology and Hydrogeology;151
19.1.6.3;6.6.3 Pilot Test Design;153
19.1.6.4;6.6.4 PTA Installation, Instrumentation and Operation;154
19.1.6.5;6.6.5 Baseline Geochemical Characterization;155
19.1.6.6;6.6.6 Hydraulic Characterization (Tracer Testing);157
19.1.6.7;6.6.7 System Operation;159
19.1.6.7.1;6.6.7.1 Electron Donor Addition;159
19.1.6.7.2;6.6.7.2 Biofouling Control;159
19.1.6.8;6.6.8 Demonstration Results;160
19.1.6.8.1;6.6.8.1 Oxidation-Reduction Potential (ORP) and Dissolved Oxygen (DO);160
19.1.6.8.2;6.6.8.2 Perchlorate;160
19.1.6.8.3;6.6.8.3 VOCs;162
19.1.6.8.4;6.6.8.4 Nitrate;164
19.1.6.8.5;6.6.8.5 Sulfate and Sulfide;164
19.1.6.8.6;6.6.8.6 Ethanol and Degradation Intermediates;164
19.1.6.8.7;6.6.8.7 Methane;164
19.1.6.8.8;6.6.8.8 Dissolved Metals;165
19.1.6.9;6.6.9 Pilot Test Conclusions;166
19.1.7;6.7 Summary;167
19.1.8;References;167
20;Chapter 7;170
20.1;Semi-Passive In Situ Bioremediation;170
20.1.1;7.1 Background;170
20.1.1.1;7.1.1 What is a Semi-Passive Approach;170
20.1.1.2;7.1.2 When to Consider a Semi-Passive Approach;172
20.1.1.3;7.1.3 Advantages and Limitations Relative to Other Approaches;172
20.1.1.4;7.1.4 Technology Maturity;173
20.1.2;7.2 System Design, Operation, and Monitoring;174
20.1.2.1;7.2.1 Typical System Design;174
20.1.2.1.1;7.2.1.1 Recirculation Wells;174
20.1.2.1.2;7.2.1.2 Groundwater Recirculation System;174
20.1.2.1.3;7.2.1.3 Electron Donor Amendment System;175
20.1.2.1.4;7.2.1.4 Instrumentation and Controls;175
20.1.2.2;7.2.2 Site Assessment Needs;176
20.1.2.3;7.2.3 Groundwater Modeling;177
20.1.2.4;7.2.4 Tracer Testing;177
20.1.2.5;7.2.5 Operation and Maintenance;178
20.1.2.6;7.2.6 Monitoring;178
20.1.2.7;7.2.7 Health and Safety;179
20.1.3;7.3 Case Study: Semi-Passive Bioremediation of Perchlorate at The Longhorn Army Ammunitions Plant;179
20.1.3.1;7.3.1 Demonstration Test Procedures;179
20.1.3.2;7.3.2 Demonstration Test Results;182
20.1.3.3;7.3.3 Conclusions of Case Study;187
20.1.4;7.4 Summary;188
20.1.5;References;188
21;Chapter 8;190
21.1;Passive Bioremediation of Perchlorate Using Emulsified Edible Oils;190
21.1.1;8.1 Introduction;190
21.1.2;8.2 Design of Passive Bioremediation Systems;191
21.1.2.1;8.2.1 Treatment System Configurations;191
21.1.2.1.1;8.2.1.1 Source Area Treatment;191
21.1.2.1.2;8.2.1.2 Permeable Reactive Barriers;193
21.1.2.2;8.2.2 Planning and Design of Passive Bioremediation Systems;193
21.1.2.2.1;8.2.2.1 Amount of Substrate Required;193
21.1.2.2.1.1;Oil Consumption during Contaminant Biodegradation;194
21.1.2.2.1.2;Oil Retention by Aquifer Materials;194
21.1.2.2.2;8.2.2.2 Amount of Water Required;195
21.1.2.2.3;8.2.2.3 Injection Point Spacing;196
21.1.2.2.4;8.2.2.4 Additional Planning Considerations;197
21.1.2.2.4.1;Secondary Water Quality Issues;197
21.1.2.2.4.2;Soil Gas Generation;198
21.1.2.3;8.2.3 Site Characterization Requirements;198
21.1.2.3.1;8.2.3.1 Hydrogeology;199
21.1.2.3.2;8.2.3.2 Contaminant Distribution;199
21.1.2.3.3;8.2.3.3 Geochemistry;200
21.1.2.4;8.2.4 Monitoring;200
21.1.2.4.1;8.2.4.1 Contaminants and Biodegradation Products;200
21.1.2.4.2;8.2.4.2 Biogeochemistry;201
21.1.2.4.3;8.2.4.3 Indicators of Organic Carbon;201
21.1.3;8.3 Case Study;201
21.1.3.1;8.3.1 Demonstration Design;202
21.1.3.2;8.3.2 Monitoring;204
21.1.3.3;8.3.3 Results;204
21.1.4;8.4 Tools and Resources;206
21.1.5;8.5 Factors Controlling Cost and Performance;206
21.1.6;8.6 Summary;207
21.1.7;References;208
22;Chapter 9;211
22.1;Permeable Organic Biowalls for Remediation of Perchlorate In Groundwater;211
22.1.1;9.1 Introduction;211
22.1.1.1;9.1.1 Applications to Date;211
22.1.1.2;9.1.2 Technology Description;212
22.1.2;9.2 Site Suitability;213
22.1.2.1;9.2.1 Land Use and Infrastructure;213
22.1.2.2;9.2.2 Contaminant Concentration and Distribution;214
22.1.2.3;9.2.3 Hydrogeology;215
22.1.2.4;9.2.4 Geochemistry;215
22.1.2.5;9.2.5 Co-Contaminants;215
22.1.3;9.3 Design Of Permeable Biowalls;215
22.1.3.1;9.3.1 Site-Specific Hydrogeology and Contaminant Distribution;216
22.1.3.2;9.3.2 Dimensions, Configuration and Residence Time;216
22.1.3.3;9.3.3 Biowall Materials;217
22.1.3.4;9.3.4 Recharge Options and Alternative Configurations;217
22.1.3.5;9.3.5 Regulatory Compliance;218
22.1.4;9.4 Biowall Installation and Construction;219
22.1.4.1;9.4.1 Construction Methods;219
22.1.4.2;9.4.2 Quality Assurance/Quality Control;220
22.1.4.3;9.4.3 Waste Management Plan;220
22.1.5;9.5 Performance Monitoring;221
22.1.5.1;9.5.1 Biogeochemistry;221
22.1.5.2;9.5.2 Perchlorate Degradation;222
22.1.5.3;9.5.3 Sustaining the Reaction Zone;222
22.1.6;9.6 Biowall System Costs;223
22.1.6.1;9.6.1 Installation and Trenching Costs;223
22.1.6.2;9.6.2 Operations and Monitoring Costs;223
22.1.6.3;9.6.3 Summary of Life Cycle Costs;224
22.1.7;9.7 Case Study: Former Nwirp Mcgregor, Mcgregor, Texas;225
22.1.7.1;9.7.1 Fast Track Cleanup and Innovative Technology Implementation;225
22.1.7.2;9.7.2 Ex Situ Groundwater Treatment;226
22.1.7.3;9.7.3 In Situ Groundwater Treatment;226
22.1.7.4;9.7.4 Natural Attenuation in Groundwater;229
22.1.7.5;9.7.5 Ex Situ Soil Treatment;229
22.1.7.6;9 .7.6 Operations and Maintenance;230
22.1.8;9.8 Summary;231
22.1.9;References;231
23;Chapter 10;233
23.1;Cost Analysis of in Situ Perchlorate Bioremediation Technologies;233
23.1.1;10.1 Background;233
23.1.2;10.2 Costing Methodology;234
23.1.3;10.3 Template Site Characteristics and Variations Considered;236
23.1.4;10.4 Cost Estimates for Base Case Site Characteristics;240
23.1.5;10.5 Impacts of Changes in Site Characteristics on Costs;245
23.1.5.1;10.5.1 Case 2: Accelerated Clean Up;245
23.1.5.2;10.5.2 Cases 3 and 4: Reduced and Elevated Concentrations of Perchlorate;245
23.1.5.3;10.5.3 Cases 5 and 6: Lower and Higher Electron Acceptor Concentrations;247
23.1.5.4;10.5.4 Cases 7 and 8: Low and High Groundwater Seepage Velocities;248
23.1.5.5;10.5.5 Case 9: Deep Groundwater;248
23.1.5.6;10.5.6 Cases 10 and 11: Thin and Thick Saturated Vertical Intervals;249
23.1.5.7;10.5.7 Cases 12 and 13: Narrow and Wide Plumes;249
23.1.6;10.6 Summary;249
23.1.7;References;251
24;Chapter 11;253
24.1;Emerging Technologies for Perchlorate Bioremediation;253
24.1.1;11.1 Introduction;253
24.1.2;11.2 Monitored Natural Attenuation;253
24.1.2.1;11.2.1 Basis;253
24.1.2.1.1;11.2.1.1 Plume Stability;254
24.1.2.1.2;11.2.1.2 Geochemical Indicators;255
24.1.2.1.3;11.2.1.3 Biological Activity Indicators;255
24.1.2.1.4;11.2.1.4 Status;256
24.1.2.2;11.2.2 Advantages and Limitations;256
24.1.2.3;11.2.3 Case Studies;256
24.1.3;11.3 Phytoremediation;258
24.1.3.1;11.3.1 Basis;258
24.1.3.2;11.3.2 Status;261
24.1.3.3;11.3.3 Advantages and Limitations;262
24.1.3.4;11.3.4 Case Studies;262
24.1.3.4.1;11.3.4.1 Groundwater Remediation;262
24.1.3.4.2;11.3.4.2 Constructed Treatment Wetlands;263
24.1.4;11.4 Vadose Zone Bioremediation;263
24.1.4.1;11.4.1 Basis;265
24.1.4.1.1;11.4.1.1 Liquid Delivery;265
24.1.4.1.2;11.4.1.2 Gaseous Delivery;266
24.1.4.2;11.4.2 Status;267
24.1.4.3;11.4.3 Advantages and Limitations;268
24.1.4.4;11.4.4 Case Studies;268
24.1.5;References;272
25;Index;278



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.