Strongin / Sergeyev | Global Optimization with Non-Convex Constraints | Buch | 978-0-7923-6490-0 | sack.de

Buch, Englisch, Band 45, 704 Seiten, Format (B × H): 183 mm x 232 mm, Gewicht: 1270 g

Reihe: Nonconvex Optimization and Its Applications

Strongin / Sergeyev

Global Optimization with Non-Convex Constraints

Sequential and Parallel Algorithms
2000. Auflage 2000
ISBN: 978-0-7923-6490-0
Verlag: Springer Us

Sequential and Parallel Algorithms

Buch, Englisch, Band 45, 704 Seiten, Format (B × H): 183 mm x 232 mm, Gewicht: 1270 g

Reihe: Nonconvex Optimization and Its Applications

ISBN: 978-0-7923-6490-0
Verlag: Springer Us


Everything should be made as simple as possible, but not simpler. (Albert Einstein, Readers Digest, 1977) The modern practice of creating technical systems and technological processes of high effi.ciency besides the employment of new principles, new materials, new physical effects and other new solutions ( which is very traditional and plays the key role in the selection of the general structure of the object to be designed) also includes the choice of the best combination for the set of parameters (geometrical sizes, electrical and strength characteristics, etc.) concretizing this general structure, because the Variation of these parameters ( with the structure or linkage being already set defined) can essentially affect the objective performance indexes. The mathematical tools for choosing these best combinations are exactly what is this book about. With the advent of computers and the computer-aided design the pro­ bations of the selected variants are usually performed not for the real examples ( this may require some very expensive building of sample op­ tions and of the special installations to test them ), but by the analysis of the corresponding mathematical models. The sophistication of the mathematical models for the objects to be designed, which is the natu­ ral consequence of the raising complexity of these objects, greatly com­ plicates the objective performance analysis. Today, the main (and very often the only) available instrument for such an analysis is computer­ aided simulation of an object's behavior, based on numerical experiments with its mathematical model.

Strongin / Sergeyev Global Optimization with Non-Convex Constraints jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Preface. Acknowledgements. Part One: Global Optimization Algorithms as Decision Procedures. Theoretical Background and Core Univariate Case. 1. Introduction. 2. Global Optimization Algorithms as Statistical Decision Procedures - The Information Approach. 3. Core Global Search Algorithm and Convergence Study. 4. Global Optimization Methods as Bounding Procedures - The Geometric Approach. Part Two: Generalizations for Parallel Computing, Constrained and Multiple Criteria Problems. 5. Parallel Global Optimization Algorithms and Evaluation of the Efficiency of Parallelism. 6. Global Optimization under Non-Convex Constraints - The Index Approach. 7. Algorithms for Multiple Criteria Multiextremal Problems. Part Three: Global Optimization in Many Dimensions. Generalizations through Peano Curves. 8. Peano-Type Space-Filling Curves as Means for Multivariate Problems. 9. Multidimensional Parallel Algorithms. 10. Multiple Peano Scannings and Multidimensional Problems. References. List of Algorithms. List of Figures. List of Tables. Index.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.