E-Book, Englisch, 504 Seiten, Web PDF
Reihe: IFAC Postprint Volume
Strejc System Structure and Control 1992
1. Auflage 2014
ISBN: 978-1-4832-9792-7
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 504 Seiten, Web PDF
Reihe: IFAC Postprint Volume
ISBN: 978-1-4832-9792-7
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Provides a useful reference source on system structure and control. Covers, linear systems, nonlinear systems, robust control, implicit system, chaotic systems, singular and time-varying systems.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;System Structure and Control;2
3;Copyright Page;3
4;Table of Contents;6
5;IFAC WORKSHOP ON SYSTEM STRUCTURE AND CONTROL;4
6;CHAPTER 1.
SOME REMARKS ON A NEW CHARACTERIZATION OFLINEAR CONTROLLABILITY;14
6.1;1 Introduction;14
6.2;2 A short review of the module-theoretic approach;14
6.3;3 On Willems' trajectory characterization of controllability;15
6.4;4 On Brunovsky's canonical form;16
6.5;References;17
7;CHAPTER 2. THE DIRECT (INVERSE) NYQUIST ARRAY AND QUANTITATIVE FEEDBACK THEORY APPROACHES TO MULTIVARIABLE FEEDBACK DESIGN : A STRUCTURAL ASSESSMENT FOR 2-INPUT 2-OUTPUT SYSTEMS;18
7.1;Abstract;18
7.2;1. INTRODUCTION;18
7.3;2. REVIEW OF INDIVIDUAL CHANNEL DESIGN;18
7.4;3. THE DIRECT (INVERSE) NYQUIST ARRAY;19
7.5;4. QUANTITATIVE FEEDBACK THEORY;20
7.6;5. CONCLUSIONS;21
7.7;REFERENCES;21
8;CHAPTER 3. FEEDBACK REALIZATION OF OPEN LOOP DIAGONALIZERS;22
8.1;1. INTRODUCTION;22
8.2;3. PRELIMINARY RESULTS;23
8.3;4. MAIN RESULTS;24
8.4;5. CONCLUSIONS;25
8.5;REFERENCES;25
9;CHAPTER 4.
POLYNOMIAL FORMULATION OF MORGAN'S PROBLEM;26
9.1;Abstract;26
9.2;INTRODUCTION;26
9.3;PROBLEM FORMULATION;26
9.4;NECESSARY CONDITIONS FOR DECOUPLING;27
9.5;CONCLUSIONS;28
9.6;REFERENCES;28
10;CHAPTER 5.
FIXED DEGREE SOLUTIONS OF POLYNOMIAL EQUATIONS;30
10.1;Abstract;30
10.2;INTRODUCTION;30
10.3;EXISTENCE CONDITIONS;30
10.4;PARAMETRIZATION;31
10.5;CONCLUSIONS;32
10.6;ACKNOWLEDGEMENT;32
10.7;REFERENCES;32
11;CHAPTER 6.
FREE END-POINT LINEAR-QUADRATIC CONTROL SUBJECT TO IMPLICIT CONTINUOUS-TIME SYSTEMS: NECESSARY AND SUFFICIENT CONDITIONS FOR SOLVABILITY;34
11.1;Abstract;34
11.2;1. Introduction and preliminaries;34
11.3;2. Main results;35
11.4;References;37
12;CHAPTER 7. STRICTLY DOUBLY COPRIME FACTORIZATIONS RELATED TO REDUCED ORDER OBSERVERS;38
12.1;Abstract;38
12.2;Introduction;38
12.3;Nomenclature;38
12.4;Preliminaries;38
12.5;Strictly doubly coprime factorizations;40
12.6;All stabilizing compensators related to reduced-order observers;40
12.7;Conclusions;41
12.8;References;41
13;CHAPTER 8. GENERALIZED BEZOUTIAN FOR DISCRETE-TIME LINEAR PERIODIC SYSTEMS;42
13.1;Abstract.;42
13.2;INTRODUCTION;42
13.3;REALIZATIONS OF PERIODIC RATIONAL MATRICES;42
13.4;PERIODIC GENERALIZED BEZOUTIAN;43
13.5;MINIMAL REALIZATIONS. PERIODIC BEZOUTIAN AND HANKEL MATRICES;44
13.6;REFERENCES;45
14;CHAPTER 9.
Equivalence Transformations of Rational Matrices;46
14.1;Abstract;46
14.2;1. Introduction;46
14.3;2. Structure of Rational Matrices in OÇC;46
14.4;3. Equivalence of Matrices in OCCU {8};47
14.5;4. Conclusions;49
14.6;REFERENCES;49
15;CHAPTER 10. ROBUST He ATTENUATION OF INPUT / OUTPUT COUPLINGS FOR LINEAR SYSTEMS;50
15.1;Abstract;50
15.2;1 - INTRODUCTION AND PROBLEM STATEMENT;50
15.3;2 - PRELIMINARY RESULTS;50
15.4;3 - ROBUSTNESS AND ATTENUATION OF INPUT - OUTPUT COUPLINGS;51
15.5;4 - REFERENCES;52
16;CHAPTER 11.
STATE-SPACE STRUCTURES FOR ARMA MODELS;54
16.1;INTRODUCTION;54
16.2;SYSTEM DEFINITION;54
16.3;STATE-SPACE MODEL I;55
16.4;STATE-SPACE MODEL II;56
16.5;CONCLUSIONS;57
16.6;REFERENCES;57
17;CHAPTER 12.
On the derivation of a state-space model of a periodic process described by difference equations;58
17.1;Abstract;58
17.2;1. Introduction;58
17.3;2. Preliminaries and notations;58
17.4;3. A time-invariant characterization of .-periodic systems and models;58
17.5;4. System equivalence;60
17.6;5. References;61
18;CHAPTER 13. GENERALIZED RICCATI EQUATION AND SPECTRAL FACTORIZATION FOR DISCRETE-TIME DESCRIPTOR SYSTEM;62
18.1;Abstract;62
18.2;INTRODUCTION;62
18.3;DESCRIPTOR SYSTEM;62
18.4;SPECTRAL FACTORIZATION;63
18.5;SOLUTION OF GENERALIZED ALGEBRAIC RICCATI EQUATION;64
18.6;CONCLUSIONS;65
18.7;REFERENCES;65
19;CHAPTER 14.
LOOP TRANSFER RECOVERY IMPROVEMENT : THE DISCRETE TIME CASE;66
19.1;Abstract;66
19.2;1. INTRODUCTION;66
19.3;2. THE LQG/LTR CONTROL;66
19.4;3. THE PROPOSED CONTROLLERS;68
19.5;4. CONCLUSION;68
19.6;REFERENCES;69
20;CHAPTER 15. DUAL LQG- BASED METHODS FOR REJECTION OF NARROW BAND DISTURBANCES;70
20.1;Abstract;70
20.2;1. INTRODUCTION;70
20.3;2. PROBLEM STATEMENT;70
20.4;3 . LQ METHODS FOR DISTURBANCE REJECTION: A CRITICAL OVERVIEW;70
20.5;4. DISTURBANCE MODELLING REVISITED;72
20.6;5. FREQUENCY SHAPING REVISITED;73
20.7;Acknowledgements;73
20.8;REFERENCES;73
21;CHAPTER 16. A COMPUTATIONAL METHOD FOR REDUCED-ORDER OBSERVERS IN LINEAR SYSTEMS;74
21.1;Abstract;74
21.2;INTRODUCTION;74
21.3;PRELIMINARIES;74
21.4;THE STRUCTURE OF THE OBSERVER;75
21.5;CONCLUSIONS;76
21.6;REFERENCES;76
22;CHAPTER 17. Introduction to a behavioral approach of continuous-time systems;78
22.1;Abstract;78
22.2;1 Introduction;78
22.3;2 Behaviors with one input and one output;78
22.4;References;80
23;CHAPTER 18. CONGRUENCE CONDITIONS BETWEEN SYSTEM IDENTIFICATION AND KALMAN FILTERING;82
23.1;Abstract;82
23.2;I. Statement of the Problem;82
23.3;II. Design of the output optimal estimator;83
23.4;REFERENCES;84
24;CHAPTER 19.
STATE SPACE STRUCTURES IN MRAC;86
24.1;Abstract;86
24.2;INTRODUCTION;86
24.3;PROBLEM STATEMENT;86
24.4;MAIN RESULT;87
24.5;CONCLUSION;88
24.6;REFERENCES;88
25;CHAPTER 20. FREQUENCY SOLVABILITY CONDITIONS FOR ALGEBRAIC RICCATI EQUATIONS;90
25.1;Abstract.;90
25.2;INTRODUCTION;90
25.3;MAIN RESULTS;91
25.4;PROOF OF THEOREM 1;91
25.5;CONCLUSIONS;92
25.6;REFERENCES;92
26;CHAPTER 21.
Minimax Controllers for Exact and Inexact Model Matching;94
26.1;Abstract;94
26.2;1 Introduction;94
26.3;2 Problem Formulation and
Results;94
26.4;3 Conclusions;97
26.5;4 References;97
27;CHAPTER 22.
STRICT PASSIVITY IN THE FREQUENCY DOMAIN;98
27.1;Abstract;98
27.2;1 Introduction;98
27.3;2 Subspaces in L2;99
27.4;3 Strictly Positive subspaces;100
27.5;4 Examples;100
27.6;5 References;101
28;CHAPTER 23.
FURTHER NUMERICAL METHODS FOR J-SPECTRAL FACTORIZATION;102
28.1;Abstract;102
28.2;INTRODUCTION;102
28.3;INTERPOLATION;102
28.4;FIRST METHOD VIA RICCATI EQUATION;103
28.5;SECOND METHOD VIA RICCATI EQUATION;104
28.6;CONNECTION;104
28.7;CONCLUSION;105
28.8;REFERENCES;105
29;CHAPTER 24. EQUALIZED CASE OF MIXED H2/H8 PERFORMANCE MEASURE:A FRACTIONAL APPROACH;106
29.1;Abstract;106
29.2;INTRODUCTION;106
29.3;H8-NORM AND H2-NORM;106
29.4;PROBLEM FORMULATION;106
29.5;ASSUMPTIONS;106
29.6;FINITE \\H\\2;107
29.7;CONSTRAINED \\H\\8;107
29.8;H8 THEOREM;107
29.9;H2/H8 THEOREM;108
29.10;REFERENCES;108
30;CHAPTER 25. A Polynomial Dimension Reduction Technique for Super-optimization;110
30.1;Abstract;110
30.2;1. Introduction;110
30.3;2.Polynomial H8-optimization;110
30.4;3. Removing the largest singular value;111
30.5;4. Conclusions;113
30.6;References;113
31;CHAPTER 26. Mixed H2/H8 Control in a Stochastic Framework;114
31.1;Abstract;114
31.2;1 Introduction;114
31.3;2 Problem statement;114
31.4;3 Evaluation of;115
31.5;4 Minimization by state feedback;116
31.6;5 Norminterpretation;116
31.7;6 Conclusions;117
31.8;References;117
32;CHAPTER 27.
STABILITY OF INTERVAL QUASIPOLYNOMIALS;118
32.1;Abstract;118
32.2;1 INTRODUCTION;118
32.3;2 PRELIMINARIES;119
32.4;3 MAIN RESULTS;119
32.5;References;120
33;CHAPTER 28.
CRITICAL POINTS OF MATRIX LEAST SQUARE DISTANCE FUNCTIONS;122
33.1;Abstract;122
33.2;Introduction;122
33.3;1. Approximations by Symmetric Matrices;122
33.4;2. Gradient Flows In this section we develop a gradient flow approach to find the critical points of the distance function f.:S(n,N) . R;123
33.5;References;124
34;CHAPTER 29.
Application of a new robust stability margin;126
34.1;Abstract;126
34.2;1 Introduction;126
34.3;2 Preliminaries;127
34.4;3 Closed loop stability;127
34.5;4 Main result;127
34.6;5 Relation to other criteria;128
34.7;6 Example;128
34.8;7 Conclusions;129
34.9;References;129
35;CHAPTER 30. Circle Condition of Optimal Regulator for Mixed Parameter Systems;130
35.1;Abstract;130
35.2;1. INTRODUCTION;130
35.3;2. SYSTEM EQUATIONS;130
35.4;3. REGULATOR PROBLEM;131
35.5;4. CIRCLE CONDITION;132
35.6;5. CONCLUSION;133
35.7;REFERRENCE;133
36;CHAPTER 31.
LQ-CONTROL OF SAMPLED CONTINUOUS-TIME SYSTEMS;134
36.1;INTRODUCTION;134
36.2;PROBLEM STATEMENT;134
36.3;A NUMERICAL EXAMPLE;136
36.4;AFTERSIGHT;137
36.5;REFERENCES;137
37;CHAPTER 32.
TOWARDS A STRUCTURAL SOLUTION OF THE MORGAN'S PROBLEM;138
37.1;Abstract;138
37.2;1.- Introduction;138
37.3;2.- Preliminaries;138
37.4;3. Main Results;140
37.5;References;141
38;CHAPTER 33. More about the Stable Exact Model Matching Problem and Implemertiable Transfert Mairices;142
38.1;Abstract;142
38.2;1. Introduction;142
38.3;2. Notations and preliminaries;143
38.4;3. Internal stability and implementable models;143
38.5;4. Parametrization of the implementable models;144
38.6;5. Conclusion;145
38.7;References;145
39;CHAPTER 34.
OUTPUT FEEDBACK DISTURBANCE DECOUPLING-GRAPH INTERPRETATION FOR STRUCTURED SYSTEMS;146
39.1;Abstract;146
39.2;I. INTRODUCTION;146
39.3;II. PROBLEM STATEMENT AND PRELIMINARIES;146
39.4;III. NECESSARY CONDITIONS AND SUFFICIENT CONDITIONS FOR OUTPUT FEEDBACK DISTURBANCE
DECOUPLING;147
39.5;IV. STRUCTURED SYSTEMS AND ASSOCIATED GRAPHS;147
39.6;V. GRAPH CHARACTERIZATION OF STRUCTURED OUTPUT FEEDBACK DISTURBANCE DECOUPLING;148
39.7;REFERENCES;149
40;CHAPTER 35. Recursive implementation of Willems' exact identification algorithms;150
40.1;Abstract;150
40.2;1 Introduction;150
40.3;2 Kernel structure of Hankel matrices;150
40.4;3 Recursive implementation of the modeling procedures;151
40.5;4 Conclusions;152
40.6;References;152
41;CHAPTER 36. PARAMETER TUNING OF PID CONTROL USING QUALITATIVE POLE PLACEMENT BASED ON CHARACTERISTIC GRAPHIC PATTERNS;154
41.1;Abstract:;154
41.2;PIP control;154
41.3;Graphic pattern of PID control;154
41.4;PID Control Parameter Turning Based on Graphic Pattern;155
41.5;Conclusion;156
41.6;References;157
42;CHAPTER 37.
ON THE GOOD CHOICE OF A REFERENCE MODEL;158
42.1;Abstract;158
42.2;I. INTRODUCTION;158
42.3;II. STRUCTURAL PROPERTIES OF LINEAR SYSTEMS AND DECOUPLING PROBLEM;158
42.4;III. MODEL REFERENCE BASED QUADRATIC DECOUPLING PROBLEM;158
42.5;IV. ESSENTIAL ORDERS AND SINGULAR OPTIMAL CONTROL;159
42.6;V. ON THE GOOD CHOICE OF A REFERENCE MODEL;160
42.7;VI. CONCLUDING REMARKS;160
42.8;REFERENCES;160
43;CHAPTER 38.
ROBUST FILTERING BASED ON PROBABILISTIC DESCRIPTIONS OF MODEL ERRORS;162
43.1;Abstract;162
43.2;1. INTRODUCTION;162
43.3;2. THE ESTIMATION PROBLEM;162
43.4;3. ADDITIVE PROBABILISTIC ERROR MODELS;163
43.5;4. DESIGN OF ROBUST FILTERS;163
43.6;REFERENCES;165
44;CHAPTER 39. ROBUST CONTROL AND FILTERING OF DISCRETE-TIME UNCERTAIN DYNAMICAL SYSTEMS;166
44.1;Abstract;166
44.2;1. INTRODUCTION;166
44.3;2. PROBLEM STATEMENTS;166
44.4;3. PRELIMINARIES;167
44.5;4. ROBUST STABILIZATION RESULTS;167
44.6;5. ROBUST H„ ANALYSIS AND SYNTHESIS;168
44.7;6. ROBUST H- FILTERING;169
44.8;7. CONCLUSION;169
44.9;REFERENCES;169
45;CHAPTER 40. ENERGETIC STRUCTURE OF SYSTEMS;170
45.1;Abstract;170
45.2;INTRODUCTION;170
45.3;PHASE SPACE AND PARAMETRIC REPRESENTATION;171
45.4;CONCLUDING REMARKS;173
45.5;REFERENCES;173
46;CHAPTER 41. SUFFICIENT CONDITIONS FOR THE ROBUST STABILITY OF SYSTEMS WITH MULTIAFFINE PARAMETER DEPENDENCE;174
46.1;Abstract;174
46.2;1 INTRODUCTION;174
46.3;2 THE CASE OF 2 PARAMETERS;175
46.4;3 PRELIMINARIES;175
46.5;4 THE VALUE SET FOR m-PARAMETER;175
46.6;5 REMARKS AND EXAMPLES;176
46.7;6 CONJECTURE OF HOLLOT AND XU;177
46.8;7 CONCLUSION;177
46.9;REFERENCES;177
47;CHAPTER 42. ON THE RELATION BETWEEN LOCAL AND GLOBAL LINEARIZATION OF BILINEAR SYSTEMS;178
47.1;Abstract;178
47.2;INTRODUCTION;178
47.3;BASIC DEFINITIONS AND THEOREMS;179
47.4;LOCAL LINEARIZATION IN R2;179
47.5;GLOBAL LINEARIZATION IN R2;180
47.6;LINEARIZATIONS IN R3 CASE;180
47.7;CONCLUDING REMARKS;181
47.8;REFERENCES;181
48;CHAPTER 43. Differential Geometrie Structures of Stable State Feedback Systems with Dual Connections;182
48.1;Abstract;182
48.2;1. Introduction;182
48.3;2. Preliminaries;182
48.4;3. Dual Connections on PD(n) ÷ Skew(n);184
48.5;4. Differential Geometric Structures of Stable;184
48.6;References;185
49;CHAPTER 44.
Integrators and Nonlinear Stabilization;186
49.1;Abstract;186
49.2;1 Introduction;186
49.3;2 Main results;186
49.4;References;189
50;CHAPTER 45.
ON THE CHARACTERISTIC MODES OF A RIGID BODY UNDER FORCES;190
50.1;Abstract;190
50.2;INTRODUCTION;190
50.3;MOTION UNDER NO FORCES;190
50.4;CHARACTERISTIC DIRECTIONS UNDER NO FORCES;190
50.5;CHARACTERISTIC DIRECTIONS UNDER FORCES;191
50.6;APPENDIX;192
50.7;CHARACTERISTIC NONLINEAR EQUATION;192
50.8;REFERENCES;192
51;CHAPTER 46.
LINEARIZATION OF BILINEAR MODELS WITH BOUNDED INPUTS;194
51.1;Abstract;194
51.2;INTRODUCTION;194
51.3;PROBLEM STATEMENT;194
51.4;THE BASIC CONTROL;194
51.5;EFFECTS OF THE BOUNDS;195
51.6;AN APPLICATION TO HYDRAULIC DRIVES;195
51.7;CONCLUSIONS AND OUTLOOK;197
51.8;REFERENCES;197
51.9;APPENDIX: NUMERICAL VALUES;197
52;CHAPTER 47.
Uniform boundary stabilization of a dynamical von Karman plate;198
52.1;Abstract;198
52.2;1 Introduction;198
52.3;References;201
53;CHAPTER 48.
EASY DESIGN OF DEADBEAT CONTROL USING PLANT STEP RESPONSE ONLY;202
53.1;Abstract;202
53.2;1 Statement of the Problem;202
53.3;2 How to Keep the Minimum Phase Properties;203
53.4;3 Illustrative Examples;204
53.5;4 Conclusion;204
53.6;References;205
54;CHAPTER 49.
DYNAMIC DISTURBANCE DECOURLING FOR DISCRETE TIME NONLINEAR SYSTEMS: A SOLUTION IN TERM OF SYSTEMS INVARIANTS;206
54.1;ABSTRACT;206
54.2;INTRODUCTION;206
54.3;PROBLEM STATEMENT;206
54.4;INVERSION ALGORITHSM FOR SYSTEMS WITH DISTURBANCES;206
54.5;PROBLEM SOLUTION;208
54.6;CONCLUSIONS;209
54.7;REFERENCES;209
55;CHAPTER 50. ON THE CONTROL OF A CLASS OF NONLINEAR DESCRIPTOR SYSTEMS: NON-HOLONOMIC MECHANICAL SYSTEMS;210
55.1;Abstract.;210
55.2;1 INTRODUCTION;210
55.3;2 EQUATIONS OF MOTION AND SIMULATION;210
55.4;3 OPTIMALITY CONDITIONS;211
55.5;4 BICYCLE MODEL;212
55.6;5 CONCLUSION;212
55.7;References;213
56;CHAPTER 51. NONLINEAR CONTROL OF A PLANAR MULTI AXIS SERVOHYDRAULIC TEST FACILITY;214
56.1;Abstract;214
56.2;1. INTRODUCTION;214
56.3;2 . MODELING;214
56.4;3. NONLINEAR CONTROLLER DESIGN;215
56.5;4. COMPUTER SIMULATION RESULTS;216
56.6;REFERENCES;216
57;CHAPTER 52.
STABILIZATION OF PLANAR NONLINEAR SYSTEMS;218
57.1;Abstract;218
57.2;1 Introduction;218
57.3;2 C1stabilizability: Bilinear approach;218
57.4;3 C1-stabilization of some critical cases;220
57.5;References;221
58;CHAPTER 53. Practical Stabilization of Nonlinear Control Systems;222
58.1;Abstract;222
58.2;Introduction;222
58.3;Practical Stabilization;223
58.4;Design of the Controller;223
58.5;Simple Decomposition;225
58.6;Concluding Remarks;225
58.7;References;225
59;CHAPTER 54. THE EFFECT OF THE HEAT EXCHANGER NETWORK TOPOLOGY ON THE NETWORK CONTROL PROPERTIES;226
59.1;Abstract;226
59.2;INTRODUCTION;226
59.3;HEAT EXCHANGER NETWORK SYNTHESIS METHODS AND THE RESULTED NETWORKS;226
59.4;CONSTRUCTION OF OVERALL SYSTEM MATRICES FROM UNIT MATRICES AND NETWORK TOPOLOGY;227
59.5;DYNAMICS OF HEAT EXCHANGER SUPERSTRUCTURE;228
59.6;STRUCTURAL CONTROL PROPERTIES;229
59.7;CONCLUSIONS;229
59.8;ACKNOWLEDGEMENT;229
59.9;REFERENCES;229
60;CHAPTER 55.
REDUCTION OF STRUCTURAL COMPLEXITY;230
60.1;Abstract;230
60.2;INTRODUCTION;230
60.3;PROCEDURE;231
60.4;RESULTS AND DISCUSSION;232
60.5;CONCLUSION;233
60.6;REFERENCES;233
61;CHAPTER 56.
LOGIC GEOMETRY AND ALGEBRA IN MODELING;234
61.1;Abstract.;234
61.2;1 Introduction;234
61.3;2 From Experiment to Logic;234
61.4;3 From Logic to Geometry;236
61.5;4 From Geometry to Algebra;236
61.6;5 From Measures to Models;237
61.7;6 Conclusions;237
61.8;References;237
62;CHAPTER 57. CENTER MANIFOLD THEORY FOR. STABILIZING A FLEXIBLE MECHANICAL SYSTEM WITH A PITCHFORK BIFURCATION;238
62.1;Abstract;238
62.2;1 Introduction;238
62.3;2 Dynamical equations of the system, an open-loop pitchfork bifurcation;238
62.4;3 Center manifold theory;239
62.5;4 A stabilizing control law for the in verted pendulum whenk=ko;240
62.6;5 Simulation results and conclusion;241
62.7;References;241
63;CHAPTER 58. ON GEOMETRIC INVARIANTS IN NONINTERACTING CONTROL VIA DYNAMIC STATE-FEEDBACK;242
63.1;Abstract;242
63.2;I. A review of some basic results and definition;242
63.3;II. A geometric concept of regular dynamic state–feedback law;243
63.4;III. Invariant subdynamics in noninteracting control with stability;244
63.5;Acknowledgements;245
63.6;References;245
64;CHAPTER 59. Some Structural Aspects in the Control of Nonholonomic Systems via Dynamic Compensation;246
64.1;Abstract;246
64.2;1 Introduction;246
64.3;2 Control Approaches;247
64.4;3 Results;248
64.5;Acknowledgments;249
64.6;References;249
65;CHAPTER 60.
ON THE DECOUPLED CANONICAL FORMS FOR NONLINEAR SYSTEMS;250
65.1;Abstract;250
65.2;INTODUCTION;250
65.3;THE MATHEMATICAL MODEL;250
65.4;AN ILLUSTRATIVE EXAMPLE : 2nd STEP;251
65.5;CONCLUSION;252
65.6;REFERENCES;252
66;CHAPTER 61. KRONECKER'S CANONICAL FORMS FOR NONLINEAR IMPLICIT DIFFERENTIAL SYSTEMS;254
66.1;Abstract;254
66.2;1 Introduction;254
66.3;2 Inversion;254
66.4;3 Canonical form;255
66.5;4 Concluding remarks;257
66.6;References;257
67;CHAPTER 62.
Disturbance Decoupling for Nonlinear Systems : a Unified Approach;258
67.1;ABSTRACT;258
67.2;1. INTRODUCTION;258
67.3;2. MAIN RESULT;260
67.4;3.CONCLUSION;261
67.5;REFERENCES;261
68;CHAPTER 63.
DYNAMIC CONTROL LABILITY DISTRIBUTIONS IN NONLINEAR SYSTEMS;262
68.1;Abstract;262
68.2;REFERENCES;264
69;CHAPTER 64. CONTROL TECHNIQUES FOR CHAOTIC DYNAMICAL SYSTEMS;266
69.1;Abstract;266
69.2;1. INTRODUCTION;266
69.3;2. THE HB TECHNIQUE FOR ANALYSING COMPLEX SYSTEMS;267
69.4;3. THE HB TECHNIQUE FOR THECONTROL OF COMPLEX SYSTEMS;268
69.5;REFERENCES;269
70;CHAPTER 65. BILINEAR SYSTEMS AS THE STRONGLY NONLINEAR SYSTEMS;270
70.1;Abstract;270
70.2;INTRODUCTION;270
70.3;ANALYTICAL RESULTS;271
70.4;NUMERICAL RESULTS;272
70.5;CONCLUSIONS;273
70.6;REFERENCES;273
71;CHAPTER 66. Model Reduction Methods for Chaotic Systems;274
71.1;Abstract:;274
71.2;Introduction;274
71.3;General Issues in the Model Reduction of Chaotic Systems;274
71.4;Available Methods and Example Applications;275
71.5;Conclusions;276
71.6;References;277
72;CHAPTER 67. FEEDBACK CONTROL FOR LINEAR CHAOTIC SYSTEMS;278
72.1;Abstract;278
72.2;References;279
73;CHAPTER 68. BIFURCATIONS AND CHAOS IN A PERIODICALLY FORCED PROTOTYPE ADAPTIVE CONTROL SYSTEM;280
73.1;Abstract;280
73.2;INTRODUCfION;280
73.3;SYSTEM DESCRIPTION;280
73.4;BIFURCATION ANALYSIS;280
73.5;CONCLUSIONS;282
73.6;REFERENCES;283
74;CHAPTER 69. A STUDY OF IDENTIFICATION AND CONTROL IN A REAL IMPLEMENTATION OF CHUA'S CIRCUIT;284
74.1;Abstract;284
74.2;INTRODUCTION;284
74.3;CHUA' S CIRCUIT;284
74.4;CHAOS CONTROL STRATEGY;285
74.5;LABORATORY SETUP;286
74.6;THE SOFTWARE PAKAGE;286
74.7;CONCLUSIONS;287
74.8;ACKNOWLEDGEMENT;287
74.9;REFERENCES;287
75;CHAPTER 70. SYNTHESIS OF A ROBUST SUBOPTIMAL CONTROLLER BASED ON THE OPTIMALITY MINIMAX CRITERIA;288
75.1;Abstract;288
75.2;INTRODUCTION;288
75.3;REFERENCE;289
76;CHAPTER 71. ROBUST ADAPTIVE CONTROL DESIGN FOR DELTA OPERATOR SYSTEMS M.A. HERSH, DEPT. OF ELECTRONICS AND ELECTRICAL ENGINEERING, UNIVERSITY OF GLASGOW, SCOTLAND;290
76.1;INTRODUCTION;290
76.2;DISCUSSION OF ROBUSTNESS ISSUES;290
76.3;CONTROL DESIGN;292
76.4;CONCLUSIONS;292
76.5;REFERENCES;292
76.6;APPENDICES;293
77;CHAPTER 72. NONINTERACTING CONTROL IN SYSTEMS WITH PERTURBATIONS;294
77.1;ABSTRACT;294
77.2;1. INTRODUCTION;294
77.3;2. BOUNDS FOR THE STEP RESPONSE;294
77.4;3. THE TRANSFER FUNCTION MATRIX OF THE PERTURBED SYSTEM;296
77.5;4. SELECTION OF THE ADDITIONAL VECTORS OF VCs);296
77.6;5. CONCLUSIONS;297
77.7;REFERENCES;297
78;CHAPTER 73. THE H8 CONTROL PROBLEM FOR CONTINUOUS-TIME LINEAR PERIODIC SYSTEMS;298
78.1;Abstract;298
78.2;INTRODUCTION;298
78.3;PRELIMINARY RESULTS;298
78.4;MAIN RESULT;299
78.5;REFERENCES;301
79;CHAPTER 74. REDUCTION OF INPUT CHATTERING OF AROBUST CONTROLLER FOR UNCERTAIN LINEAR SYSTEMS — A PROPOSAL OF FICTITIOUS SET POINT —;302
79.1;Abstract;302
79.2;1. Introduction;302
79.3;2. Problem statement;302
79.4;3. Robust controller by using FSP;303
79.5;4. Remarks;304
79.6;5. Simulated examples;304
79.7;6. Conclusion;305
79.8;References;305
80;CHAPTER 75. Equivalent Transformation of the Framework of Normalized Robust Control Systems;306
80.1;Abstract;306
80.2;1. Introduction;306
80.3;2. LFTs and CSDs;306
80.4;3. J-lossless Factorization Theory;307
80.5;4. Solutions to Normalized Robust Stabilization;308
80.6;5. Conclusions;309
80.7;References;309
81;CHAPTER 76. Robust Stabilization Problem for a System with Delays in Control;310
81.1;Abstract;310
81.2;1. Introduction;310
81.3;2. Problem Formulation;310
81.4;3. An H8-problem for Time Delay Systems;311
81.5;4. Robust Stabilization Problem;312
81.6;5. Conclusion;313
81.7;References;313
82;CHAPTER 77. ROBUST SLIDING MODE CONTROL SERVO SYSTEMS;314
82.1;Abstract;314
82.2;INTRODUCTION;314
82.3;SLIDING MODE FOR SERVO SYSTEMS;314
82.4;MULTI-SLIDING MODE REGIME;315
82.5;SIMULATION RESULTS;316
82.6;CONCLUSION;317
82.7;REFERENCES;317
83;CHAPTER 78. EXTERNAL REACHABILITY FOR IMPLICIT DESCRIPTIONS;318
83.1;Abstract;318
83.2;1- Introduction;318
83.3;2- External Reachability;319
83.4;3- Concluding Remarks;320
83.5;4- Illustrative Example;320
83.6;References;320
83.7;APPENDIX A;321
83.8;APPENDIX B;321
84;CHAPTER 79. AN ALGEBRAIC DEFINITION OF TIME-VARYING TRANSFER MATRICES;322
84.1;Abstract;322
84.2;1 Introduction;322
84.3;2 Laplace functor, transfer vector spaces and matrices;322
84.4;3 Transfer algebra;323
84.5;4 Decomposition of transfer matrices : controllability,observability and realization;323
84.6;5 Input-output inversion and model-matching;324
84.7;References;324
85;CHAPTER 80. Impulsive-smooth Behaviors;326
85.1;1 Introduction;326
85.2;2 The distributional frame work;326
85.3;3 First-order representations;327
85.4;4 Polynomial representations;328
85.5;5 State space isomorphism;328
85.6;6 Conclusions;329
85.7;References;329
86;CHAPTER 81. REMARKS ON INPUT-ACCEPTANCE, OUTPUT-UNIQUENESS FOR IMPLICIT LINEAR SYSTEMS AND THEIR INTERPRETATION FOR THE VON NEUMANN MODEL OF ECONOMY;330
86.1;Abstract;330
86.2;INTRODUCTION;330
86.3;NOTATION AND AUXILIARY RESULTS;330
86.4;INPUT-ACCEPTANCE PROPERTIES;331
86.5;OUTPUT-UNIQUENESS PROPERTIES: THE DUALITY RELATIONSHIP;332
86.6;INPUT-ACCEPTANCE AND OUTPUT-UNIQUENESS IN LINEAR MODELS OF ECONOMY;332
86.7;REFERENCES;333
87;CHAPTER 82. REMARKS ON IMFLICIT LINEAR CONTINUOUS-TIME SYSTEMS;334
87.1;Abstract;334
87.2;0. Introduction;334
87.3;1. BasIc notatIon;334
87.4;2. Smooth-impulsive solutions of implicit linear dIfferential .equations;335
87.5;3. Spaces or admissible lnltial conditions;335
87.6;References;337
88;CHAPTER 83. STRUCTURAL PROPERTIES OF SINGULAR SYSTEMS PART 2 : OBSERVABILITY AND DUALITY;338
88.1;Abstract;338
88.2;I. INTRODUCTION AND PRELIMINARIES;338
88.3;II. OBSERVABILITY AND CONSTRUCTABILITY;338
88.4;REFERENCES;340
89;CHAPTER 84. AN EXTERIOR ALGEBRA BASED CHARACTERIZATION OF THE FUNDAMENTAL SUBSPACES OF SINGULAR SYSTEMS;342
89.1;Abstract;342
89.2;1. INTRODUCTION;342
89.3;2. PROBLEM STATEMENT AND PRELIMINARY RESULTS;342
89.4;3. BACKGROUND FROM EXTERIOR ALGEBRA;343
89.5;4. EXTERIOR ALGEBRA CHARACTERIZATION OF MATRIX PENCIL INVARIANTS;344
89.6;5. EXTERIOR ALGEBRA BASED CHARACTERIZATION OF INVARIANT SUBSPACES;345
89.7;6. NECESSARY CONDITIONS FOR POSSIBLE DIMENSION OF FAMILIES OF SUBSPACES;345
89.8;7. CONCLUSIONS;345
89.9;REFERENCES;345
90;CHAPTER 85. INFINITE ZEROS FOR LINEAR SYSTEMS WITH DELAYS . APPLICATION TO MODEL MATCHING OR DISTURBANCE REJECTION;346
90.1;Abstract;346
90.2;Introduction;346
90.3;1- Smith-McMilian Form at Infinity and Model Matching;346
90.4;2- State Space Representations of Systems with delays and Partial Disturbance Decoupling;347
90.5;References;349
91;CHAPTER 86. STRUCTURAL PROPERTIES OF SINGULAR SYSTEMS PART 1: CONTROLLABILITY;350
91.1;Abstract;350
91.2;I. INTRODUCTION AND PRELIMINARIES;350
91.3;II. CONTROLLABILITY AND REACHABILITY;352
91.4;REFERENCES;353
92;CHAPTER 87. A MATRIX PENCIL APPROACH TO THE COVER PROBLEM FOR LINEAR SYSTEMS;354
92.1;ABSTRACT;354
92.2;1. INTRODUCTION;354
92.3;2. PRELIMINARY DEFINITIONS AND STATEMENT OF THE PROBLEM;354
92.4;3. KRONECKER INVARIANT TRANSFORMATION BY MATRIX PENCIL AUGMENTATION;355
92.5;4. THE MATRIX PENCIL REALIZATION PROBLEM;356
92.6;5. LEFT REGULAR SOLUTIONS AND THE OVERALL COVER ·PROBLEM;356
92.7;6. CONCLUSIONS;357
92.8;REFERENCES;357
93;CHAPTER 88. USE OF MATRIX PENCILS FOR PARAMETER IDENTIFICATION IN ANALOG CIRCUITS;358
93.1;Abstract.;358
93.2;I. INTRODUCTION;358
93.3;II. PARAMETER IDENTIFICATION WITH SINGLE MEASUREMENT SET;358
93.4;III. PARAMETER IDENTIFICATION WITH MULTIPLE MEASUREMENT SET;359
93.5;IV. USE OF THE GLOBAL IMPLICIT FUNCTION THEOREM IN THE CASE OF INSUFFICIENT MEASUREMENTS;360
93.6;COKCLUSIQNS;361
93.7;REFERENCES;361
94;CHAPTER 89. On a Fundamental Notion of Equivalence in Linear Systems Theory;362
94.1;Abstract;362
94.2;1. Introduction;362
94.3;2. Preliminary Results;362
94.4;3. Mappings of Solution Sets;363
94.5;4. Fundamental Equivalence;364
94.6;5. Conclusions;365
94.7;References;365
95;CHAPTER 90. Simultaneous Output-Feedback Stabilization For Continuous Systems;366
95.1;Abstract;366
95.2;Introduction;366
95.3;Simultaneous Control Results;367
95.4;Conclusions;368
95.5;References;368
96;CHAPTER 91. A CAD SYSTEM FOR NONLINEAR DYNAMIC COMPENSATORS USING "Mathematica";370
96.1;Abstract;370
96.2;1 INTRODUCTION;370
96.3;2 NONLINEAR DYNAMIC COMPENSA TOR;370
96.4;3 CAD SYSTEM;371
96.5;4 EXAMPLE;373
96.6;5 CONCLUSIONS;373
96.7;REFERENCES;373
97;CHAPTER 92. THE PROCESS STABILIZATION IN THE ELECTROLYTIC PRODUCTION OF ALUMINIUM;374
97.1;Abstract;374
97.2;INTRODUCTION;374
97.3;TECHNOLOGICAL STATE ESTIMATOR OF THE PROCESS;374
97.4;THE TECHNOLOGICAL PROCESS CONTROL;376
97.5;CONCLUSION;377
97.6;REFERENCES;377
98;CHAPTER 93. LOOP SHAPING H8 DESIGN: APPLICATION TO THE ROBUST STABILIZATION OF AN HELICOPTER;378
98.1;Abstract.;378
98.2;I. INTRODUCTION;378
98.3;2. HELICOPTER MODEL AND UNCERTAINTIES;378
98.4;3. THE LOOP SHAPING H8 DESIGN;378
98.5;4. CONTROLLER REDUCTION;379
98.6;5. THE HELICOPTER WITH THE LOOP SHAPING H8 DESIGN;379
98.7;6. CONCLUSION;380
98.8;7. REFERENCES;380
99;CHAPTER 94. Digital multivariable control of active magnetic bearings;382
99.1;ABSTRACT;382
99.2;I - INTRODUCTION;382
99.3;II - MECHANICAL MODEL;383
99.4;Ill - CONTROL STRUCTURE DESIGN;384
99.5;IV - ACTUATOR INVERSION;384
99.6;V - COMMENTED RESULTS;385
99.7;VI-CONCLUSION;385
99.8;VII - BIBLIOGRAPHY;385
100;CHAPTER 95. Eigenstructurc approximations and their use for commutative controllers strategy : application to a helicopter;386
100.1;Abstract;386
100.2;NOTATIONS;386
100.3;INTRODUCTION;386
100.4;METHODOLOGY;386
100.5;CONCLUSION;389
100.6;REFERENCES;389
101;CHAPTER 96. CONTROL OF AN ELECTROMECHANICAL DRIVE USING V.S.S.C. WITH DUBIOUS PARAMETERS;390
101.1;Abstract;390
101.2;1 - INTRODUCTION;390
101.3;2 · ELECTROMECHANICAL PLANT;390
101.4;3 - SERVO-CONTROL STUDY;390
101.5;4 - Expérimentations;392
101.6;5 - CONCLUSION;393
101.7;REFERENCES;393
101.8;APPENDIX;393
102;CHAPTER 97. ON THE LINEAR QUADRATIC ADAPTIVE CONTROL FOR THE DESIGN OF MISSILE AUTOPILOTS;394
102.1;ABSTRACT;394
102.2;1. INTRODUCTION;394
102.3;2 . PROBLEM STATEMENT;394
102.4;3. THE LINEAR QUADRATIC ROBUST ADAPTIVE CONTROLLER;394
102.5;4. EXPERIMENTAL RESULTS;396
102.6;5. CONCLUSION;396
102.7;REFERENCES;396
103;CHAPTER 98. NUMERICAL ALGORITHMS AND SOFTWARE TOOLS FOR ANALYSIS AND MODELLING OF DESCRIPTOR SYSTEMS;398
103.1;Abstract;398
103.2;INTRODUCTION;398
103.3;SIMILARITY TRANS FORMATIONS;398
103.4;ANALYSIS OF DESCRIPTOR SYSTEMS;399
103.5;MODELLING OF DESCRIPTOR SYSTEMS;400
103.6;INTERACTIVE SOFTWARE TOOLS;400
103.7;CONCLUSIONS;400
103.8;REFERENCES;401
104;CHAPTER 99. Algebraic Design of Linear Multivariable Systems. Use of Symbolic Computation (Mathematica);402
104.1;Abstract;402
104.2;1. Introduction;402
104.3;2. The main functions of the package;402
104.4;3. The solutions of some classical control problems;403
104.5;4. Conclusion;404
104.6;References;404
105;CHAPTER 100. On the structure of finite memory and separable 2D systems;406
105.1;Abstract;406
105.2;1 Introduction;406
105.3;2 Finite memory and separable systems;406
105.4;3 Inverse systems;408
105.5;4 References;409
106;CHAPTER 101. STABILITY OF NONCONVOLUTIONAL n-D SYSTEMS;410
106.1;Abstract;410
106.2;Introduction;410
106.3;Difference equation of the first order;411
106.4;Systems of difference equations;412
106.5;References;412
107;CHAPTER 102. FLOQUET-LAPUNOV TRANSFORMATION FOR 2-D PERIODIC LINEAR SYSTEM;414
107.1;Abstract;414
107.2;INTRODUCTION;414
107.3;PROBLEM FORMULATION;414
107.4;PROBLEM SOLUTION;415
107.5;TRANSFORMATION OF THE MODEL TO ITS CANONICAL FORM;416
107.6;CONCLUDING REMARKS;417
107.7;REFERENCES;417
108;CHAPTER 103. INVERSES OF n-D POLYNOMIAL MATRICES;418
108.1;Abstract;418
108.2;INTRODUCTION;418
108.3;INVERSES OF SCALAR CAUSAL POLYNOMIALS;418
108.4;INVERSES OF CAUSAL POLYNOMIAL MATRICES;418
108.5;INVERSES OF SCALAR NON-CAUSAL POLYNOMIALS;419
108.6;INVERSES OF NON-CAUSAL POLYNOMIAL MATRICES;420
108.7;REFERENCES;421
109;CHAPTER 104. MAREPRESENTATION OF /2 2D SYSTEMS;422
109.1;Abstract;422
109.2;INTRODUCTION;422
109.3;PRELIMINARIES;422
109.4;REPRESENTATION OF /2 A R SYSTEMS;423
109.5;CONCLUSIONS;424
109.6;References;424
110;CHAPTER 105. 2D Transfer-Functions Based Controller Design for Differential Linear Repetitive Processes;426
110.1;Abstract;426
110.2;1. Introduction;426
110.3;2. Systems Representations;426
110.4;3. Stability;426
110.5;4. Control objectives and structures;427
110.6;5. Controller Design - some preliminary results;428
110.7;6. Conclusions;429
110.8;References;429
111;CHAPTER 106. On the Design of Practically-Stable nD Feedback Systems;430
111.1;Abstract;430
111.2;1. INTRODUCTION;430
111.3;2. PRACTICAL-BIBO STABILITY;430
111.4;3. FEEDBACK PRACTICAL-STABILIZATION BY ALGEBRAIC METHOD;430
111.5;4. FEEDBACK PRACTICAL-STABILIZATION BY STATE-SPACE APPROACH;432
111.6;5. A CONNECTION BETWEEN STATE SPACE AND DOUBLY COPRIME MFD;433
111.7;6. CONCLUDING REMARKS;433
111.8;REFERENCES;433
112;CHAPTER 107. Exact Modelling of Finite 2D Arrays;434
112.1;Abstract;434
112.2;1 Introduction;434
112.3;2 Behavioural theory of dynamics;434
112.4;3 Exact modelling of finite 2D scalar arrays;435
112.5;References;437
113;CHAPTER 108. 2-D System Structure and Applications;438
113.1;ABSTRACT;438
113.2;1. Introduction;438
113.3;2. 2 -D Coprimeness;438
113.4;3. Matrix Fraction Descriptions;438
113.5;4. General Polynomial Realisations;439
113.6;5. Linear Differential Unit Memory Processes;441
113.7;6. Conclusions;441
113.8;7. References;441
114;CHAPTER 109. ON VARIOUS INTERPRETATIONS OF ROSENBROCK'S THEOREM;442
114.1;Abstract.;442
114.2;Introduction;442
114.3;Rosenbrock's Theorem;442
114.4;Various Formulations of Rosenbrock's Theorem;442
114.5;Model Matching;444
114.6;Conclusions;445
114.7;References;445
115;CHAPTER 110. EIGENSTRUCTURE ASSIGNMENT BY P AND PD STATE FEEDBACK IN LINEAR SINGULAR SYSTEMS;446
115.1;Abstract.;446
115.2;Introduction;446
115.3;Basic concepts;446
115.4;Eigenstructure assignment by P state feedback;447
115.5;Eigenstructure assignment by PD state feedback;448
115.6;References;448
116;CHAPTER 111. ROSENBROCK'S THEOREM FOR NONCONTROLLABLE SYSTEMS AND MATRIX COMPLETION PROBLEMS;450
116.1;Abstract;450
116.2;1. INTRODUCTION;450
116.3;2. RESULTS;451
116.4;References;452
117;CHAPTER 112. A CHARACTERIZATION OF FEEDBACK EQUIVALENCE BASED ON A GENERALIZATION OF ROSENBROCK'S THEOREM;454
117.1;Abstract;454
117.2;1. INTRODUCTION;454
117.3;2. MAIN RESULT;454
117.4;3. NOTATION;454
117.5;4. STATE FEEDBACK;455
117.6;References;455
118;CHAPTER 113. FEED BACK EQUIVALENCE BY RANK TESTS;456
118.1;Abstract;456
118.2;1. INTRODUCTION;456
118.3;2. MAIN RESULT;457
118.4;References;457
119;CHAPTER 114. A STATE-SPACE REALIZATION FORM OF MULTI-INPUT MULTI-OUTPUT TWO-DIMENSIONAL SYSTEMS;458
119.1;Abstract;458
119.2;INTRODUCTION;458
119.3;II. VARIOUS CONSIDERATION;460
119.4;III. EXISTENCE OF STATE-SPACE REALIZATION;460
119.5;IV. CONCLUSION;461
119.6;REFERENCES;461
120;CHAPTER 115. DISCRETE-TIME T1ME-YAKYINC EXACT MODEL MATCHING AND ADAPTIVE CONTKOL;462
120.1;Abstract;462
120.2;INTRODUCTION;462
120.3;TIME DOMAIN POLE ASSIGNMENT;462
120.4;FREQUENCY DOMAIN EMM;463
120.5;ADAPTIVE CONTROL;464
120.6;CONCLUSIONS;464
120.7;REFERENCES;465
121;CHAPTER 116. THE LINEAR-QUADRATIC OPTIMAL REGULATOR OF TIME-INVARIANT DISCRETE SINGULAR SYSTEMS;466
121.1;Abstract;466
121.2;INTRODUCTION;466
121.3;SOLUTION OF THE LQ PROBLEM;467
121.4;CONCLUSION;469
121.5;REFERENCES;469
122;CHAPTER 117. DECOUPLING BY STATE FEEDBACK IN SINGULAR SYSTEHS;470
122.1;Abstract;470
122.2;1. INTRODUCTION;470
122.3;2. PROBLEM FORMULATION;470
122.4;III. DECOUPLING PROBLEM;472
122.5;IV. CONCLUSION;473
122.6;REFERENCES;473
123;CHAPTER 118. TRANSFER FUNCTION OF LINEAR DISCRETE TIME-VARYING SYSTEMS VIA NON-COMMUTATIVE ALGEBRA;474
123.1;Abstract:;474
123.2;I-INTRODUCTION;474
123.3;II-NON-COMMUTATIVE POLYNOMIALS;475
123.4;III- RATIONAL FRACTION;475
123.5;IV - SYSTEMS V. TRANSFER FUNCTION;475
123.6;V - 1: Definition;476
123.7;VI-CONCLUSION;477
123.8;REFERENCES;477
124;CHAPTER 119. THE LINEAR CONSTRAINED REGULATION PROBLEM FOR SOME LINEAR CONTINUOUS-TIME SINGULAR SYSTEMS;478
124.1;Abstract;478
124.2;1 Introduction;478
124.3;2 Preliminary results on positive invariance;478
124.4;3 Positive invariance of dissymmetrical polyhedra;479
124.5;4 An application to the input constrained problem;480
124.6;References;481
125;CHAPTER 120. A Deadbeat Controller for Time Varying Plant Following the Reference Model Output;482
125.1;Abstract;482
125.2;1. Introduction;482
125.3;2. Controller Configuration with two free parameters;482
125.4;3. Analysis of model matching closed system;483
125.5;4. Numerical Examples;484
125.6;5. Conclusion;484
125.7;References;484
126;CHAPTER 121. Commutation of Polynomial Coefficients on Finite Time Horizon;486
126.1;Abstract;486
126.2;Introduction;486
126.3;Notation;486
126.4;Nonstationary operators;486
126.5;Problem formulation;488
126.6;Commutation of polynomials in shift operators;488
126.7;Commutation of polynomials in difference operators;488
126.8;Conclusions;489
126.9;Appendix;489
126.10;References;489
127;CHAPTER 122. OPEN LOOP DIAGONAL DOMINANCE IN THE PRESENCE OF UNCERTAINTIES;490
127.1;ABSTRACT;490
127.2;NOTATION;490
127.3;I. INTRODUCTION;490
127.4;II. PROBLEM FORMULATION;490
127.5;III. DIAGONAL DOMINANCE IN THE PRESENCE OF UNCERTAINTIES;491
127.6;IY EXAMPLE;492
127.7;V CONCLUSIONS.;493
127.8;REFERENCES;493
128;CHAPTER 123. Interpretations of the gap topology: a survey;494
128.1;1 Basic definitions;494
128.2;2 Equivalence of pointwise gap and graph topologies;495
128.3;3 Equivalence of dsup, OH and OII;496
128.4;4 Equivalence of On, OH and dH2;496
128.5;5 Equivalence of dH2 and OL2;497
128.6;References;498
129;CHAPTER 124. Controlling Chaos and Targeting in aThermal Convection Loop;500
129.1;Abstract;500
129.2;1. Introduction;500
129.3;2. Thermal Convection Loop Model;500
129.4;3. Bifurcation Control of Convection;501
129.5;4. Concluding Remarks;503
129.6;Acknowledgment;503
129.7;References;503
130;CHAPTER 125. A SPESCIAL ANALOG COMPUTER FOR DIRECT STATE SPACE FORMULATION (A, B, C, D);504
130.1;Abstract;504
130.2;INTRODUCTION;504
130.3;2 . MODELING THROUGH STATE VARIABLES;505
130.4;REFERENCES;506
131;AUTHOR'S INDEX;508