Strejc | System Structure and Control 1992 | E-Book | sack.de
E-Book

E-Book, Englisch, 504 Seiten, Web PDF

Reihe: IFAC Postprint Volume

Strejc System Structure and Control 1992


1. Auflage 2014
ISBN: 978-1-4832-9792-7
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 504 Seiten, Web PDF

Reihe: IFAC Postprint Volume

ISBN: 978-1-4832-9792-7
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



Provides a useful reference source on system structure and control. Covers, linear systems, nonlinear systems, robust control, implicit system, chaotic systems, singular and time-varying systems.

Strejc System Structure and Control 1992 jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover;1
2;System Structure and Control;2
3;Copyright Page;3
4;Table of Contents;6
5;IFAC WORKSHOP ON SYSTEM STRUCTURE AND CONTROL;4
6;CHAPTER 1.
SOME REMARKS ON A NEW CHARACTERIZATION OFLINEAR CONTROLLABILITY;14
6.1;1 Introduction;14
6.2;2 A short review of the module-theoretic approach;14
6.3;3 On Willems' trajectory characterization of controllability;15
6.4;4 On Brunovsky's canonical form;16
6.5;References;17
7;CHAPTER 2. THE DIRECT (INVERSE) NYQUIST ARRAY AND QUANTITATIVE FEEDBACK THEORY APPROACHES TO MULTIVARIABLE FEEDBACK DESIGN : A STRUCTURAL ASSESSMENT FOR 2-INPUT 2-OUTPUT SYSTEMS;18
7.1;Abstract;18
7.2;1. INTRODUCTION;18
7.3;2. REVIEW OF INDIVIDUAL CHANNEL DESIGN;18
7.4;3. THE DIRECT (INVERSE) NYQUIST ARRAY;19
7.5;4. QUANTITATIVE FEEDBACK THEORY;20
7.6;5. CONCLUSIONS;21
7.7;REFERENCES;21
8;CHAPTER 3. FEEDBACK REALIZATION OF OPEN LOOP DIAGONALIZERS;22
8.1;1. INTRODUCTION;22
8.2;3. PRELIMINARY RESULTS;23
8.3;4. MAIN RESULTS;24
8.4;5. CONCLUSIONS;25
8.5;REFERENCES;25
9;CHAPTER 4.
POLYNOMIAL FORMULATION OF MORGAN'S PROBLEM;26
9.1;Abstract;26
9.2;INTRODUCTION;26
9.3;PROBLEM FORMULATION;26
9.4;NECESSARY CONDITIONS FOR DECOUPLING;27
9.5;CONCLUSIONS;28
9.6;REFERENCES;28
10;CHAPTER 5.
FIXED DEGREE SOLUTIONS OF POLYNOMIAL EQUATIONS;30
10.1;Abstract;30
10.2;INTRODUCTION;30
10.3;EXISTENCE CONDITIONS;30
10.4;PARAMETRIZATION;31
10.5;CONCLUSIONS;32
10.6;ACKNOWLEDGEMENT;32
10.7;REFERENCES;32
11;CHAPTER 6.
FREE END-POINT LINEAR-QUADRATIC CONTROL SUBJECT TO IMPLICIT CONTINUOUS-TIME SYSTEMS: NECESSARY AND SUFFICIENT CONDITIONS FOR SOLVABILITY;34
11.1;Abstract;34
11.2;1. Introduction and preliminaries;34
11.3;2. Main results;35
11.4;References;37
12;CHAPTER 7. STRICTLY DOUBLY COPRIME FACTORIZATIONS RELATED TO REDUCED ORDER OBSERVERS;38
12.1;Abstract;38
12.2;Introduction;38
12.3;Nomenclature;38
12.4;Preliminaries;38
12.5;Strictly doubly coprime factorizations;40
12.6;All stabilizing compensators related to reduced-order observers;40
12.7;Conclusions;41
12.8;References;41
13;CHAPTER 8. GENERALIZED BEZOUTIAN FOR DISCRETE-TIME LINEAR PERIODIC SYSTEMS;42
13.1;Abstract.;42
13.2;INTRODUCTION;42
13.3;REALIZATIONS OF PERIODIC RATIONAL MATRICES;42
13.4;PERIODIC GENERALIZED BEZOUTIAN;43
13.5;MINIMAL REALIZATIONS. PERIODIC BEZOUTIAN AND HANKEL MATRICES;44
13.6;REFERENCES;45
14;CHAPTER 9.
Equivalence Transformations of Rational Matrices;46
14.1;Abstract;46
14.2;1. Introduction;46
14.3;2. Structure of Rational Matrices in OÇC;46
14.4;3. Equivalence of Matrices in OCCU {8};47
14.5;4. Conclusions;49
14.6;REFERENCES;49
15;CHAPTER 10. ROBUST He ATTENUATION OF INPUT / OUTPUT COUPLINGS FOR LINEAR SYSTEMS;50
15.1;Abstract;50
15.2;1 - INTRODUCTION AND PROBLEM STATEMENT;50
15.3;2 - PRELIMINARY RESULTS;50
15.4;3 - ROBUSTNESS AND ATTENUATION OF INPUT - OUTPUT COUPLINGS;51
15.5;4 - REFERENCES;52
16;CHAPTER 11.
STATE-SPACE STRUCTURES FOR ARMA MODELS;54
16.1;INTRODUCTION;54
16.2;SYSTEM DEFINITION;54
16.3;STATE-SPACE MODEL I;55
16.4;STATE-SPACE MODEL II;56
16.5;CONCLUSIONS;57
16.6;REFERENCES;57
17;CHAPTER 12.
On the derivation of a state-space model of a periodic process described by difference equations;58
17.1;Abstract;58
17.2;1. Introduction;58
17.3;2. Preliminaries and notations;58
17.4;3. A time-invariant characterization of .-periodic systems and models;58
17.5;4. System equivalence;60
17.6;5. References;61
18;CHAPTER 13. GENERALIZED RICCATI EQUATION AND SPECTRAL FACTORIZATION FOR DISCRETE-TIME DESCRIPTOR SYSTEM;62
18.1;Abstract;62
18.2;INTRODUCTION;62
18.3;DESCRIPTOR SYSTEM;62
18.4;SPECTRAL FACTORIZATION;63
18.5;SOLUTION OF GENERALIZED ALGEBRAIC RICCATI EQUATION;64
18.6;CONCLUSIONS;65
18.7;REFERENCES;65
19;CHAPTER 14.
LOOP TRANSFER RECOVERY IMPROVEMENT : THE DISCRETE TIME CASE;66
19.1;Abstract;66
19.2;1. INTRODUCTION;66
19.3;2. THE LQG/LTR CONTROL;66
19.4;3. THE PROPOSED CONTROLLERS;68
19.5;4. CONCLUSION;68
19.6;REFERENCES;69
20;CHAPTER 15. DUAL LQG- BASED METHODS FOR REJECTION OF NARROW BAND DISTURBANCES;70
20.1;Abstract;70
20.2;1. INTRODUCTION;70
20.3;2. PROBLEM STATEMENT;70
20.4;3 . LQ METHODS FOR DISTURBANCE REJECTION: A CRITICAL OVERVIEW;70
20.5;4. DISTURBANCE MODELLING REVISITED;72
20.6;5. FREQUENCY SHAPING REVISITED;73
20.7;Acknowledgements;73
20.8;REFERENCES;73
21;CHAPTER 16. A COMPUTATIONAL METHOD FOR REDUCED-ORDER OBSERVERS IN LINEAR SYSTEMS;74
21.1;Abstract;74
21.2;INTRODUCTION;74
21.3;PRELIMINARIES;74
21.4;THE STRUCTURE OF THE OBSERVER;75
21.5;CONCLUSIONS;76
21.6;REFERENCES;76
22;CHAPTER 17. Introduction to a behavioral approach of continuous-time systems;78
22.1;Abstract;78
22.2;1 Introduction;78
22.3;2 Behaviors with one input and one output;78
22.4;References;80
23;CHAPTER 18. CONGRUENCE CONDITIONS BETWEEN SYSTEM IDENTIFICATION AND KALMAN FILTERING;82
23.1;Abstract;82
23.2;I. Statement of the Problem;82
23.3;II. Design of the output optimal estimator;83
23.4;REFERENCES;84
24;CHAPTER 19.
STATE SPACE STRUCTURES IN MRAC;86
24.1;Abstract;86
24.2;INTRODUCTION;86
24.3;PROBLEM STATEMENT;86
24.4;MAIN RESULT;87
24.5;CONCLUSION;88
24.6;REFERENCES;88
25;CHAPTER 20. FREQUENCY SOLVABILITY CONDITIONS FOR ALGEBRAIC RICCATI EQUATIONS;90
25.1;Abstract.;90
25.2;INTRODUCTION;90
25.3;MAIN RESULTS;91
25.4;PROOF OF THEOREM 1;91
25.5;CONCLUSIONS;92
25.6;REFERENCES;92
26;CHAPTER 21.
Minimax Controllers for Exact and Inexact Model Matching;94
26.1;Abstract;94
26.2;1 Introduction;94
26.3;2 Problem Formulation and
Results;94
26.4;3 Conclusions;97
26.5;4 References;97
27;CHAPTER 22.
STRICT PASSIVITY IN THE FREQUENCY DOMAIN;98
27.1;Abstract;98
27.2;1 Introduction;98
27.3;2 Subspaces in L2;99
27.4;3 Strictly Positive subspaces;100
27.5;4 Examples;100
27.6;5 References;101
28;CHAPTER 23.
FURTHER NUMERICAL METHODS FOR J-SPECTRAL FACTORIZATION;102
28.1;Abstract;102
28.2;INTRODUCTION;102
28.3;INTERPOLATION;102
28.4;FIRST METHOD VIA RICCATI EQUATION;103
28.5;SECOND METHOD VIA RICCATI EQUATION;104
28.6;CONNECTION;104
28.7;CONCLUSION;105
28.8;REFERENCES;105
29;CHAPTER 24. EQUALIZED CASE OF MIXED H2/H8 PERFORMANCE MEASURE:A FRACTIONAL APPROACH;106
29.1;Abstract;106
29.2;INTRODUCTION;106
29.3;H8-NORM AND H2-NORM;106
29.4;PROBLEM FORMULATION;106
29.5;ASSUMPTIONS;106
29.6;FINITE \\H\\2;107
29.7;CONSTRAINED \\H\\8;107
29.8;H8 THEOREM;107
29.9;H2/H8 THEOREM;108
29.10;REFERENCES;108
30;CHAPTER 25. A Polynomial Dimension Reduction Technique for Super-optimization;110
30.1;Abstract;110
30.2;1. Introduction;110
30.3;2.Polynomial H8-optimization;110
30.4;3. Removing the largest singular value;111
30.5;4. Conclusions;113
30.6;References;113
31;CHAPTER 26. Mixed H2/H8 Control in a Stochastic Framework;114
31.1;Abstract;114
31.2;1 Introduction;114
31.3;2 Problem statement;114
31.4;3 Evaluation of;115
31.5;4 Minimization by state feedback;116
31.6;5 Norminterpretation;116
31.7;6 Conclusions;117
31.8;References;117
32;CHAPTER 27.
STABILITY OF INTERVAL QUASIPOLYNOMIALS;118
32.1;Abstract;118
32.2;1 INTRODUCTION;118
32.3;2 PRELIMINARIES;119
32.4;3 MAIN RESULTS;119
32.5;References;120
33;CHAPTER 28.
CRITICAL POINTS OF MATRIX LEAST SQUARE DISTANCE FUNCTIONS;122
33.1;Abstract;122
33.2;Introduction;122
33.3;1. Approximations by Symmetric Matrices;122
33.4;2. Gradient Flows In this section we develop a gradient flow approach to find the critical points of the distance function f.:S(n,N) . R;123
33.5;References;124
34;CHAPTER 29.
Application of a new robust stability margin;126
34.1;Abstract;126
34.2;1 Introduction;126
34.3;2 Preliminaries;127
34.4;3 Closed loop stability;127
34.5;4 Main result;127
34.6;5 Relation to other criteria;128
34.7;6 Example;128
34.8;7 Conclusions;129
34.9;References;129
35;CHAPTER 30. Circle Condition of Optimal Regulator for Mixed Parameter Systems;130
35.1;Abstract;130
35.2;1. INTRODUCTION;130
35.3;2. SYSTEM EQUATIONS;130
35.4;3. REGULATOR PROBLEM;131
35.5;4. CIRCLE CONDITION;132
35.6;5. CONCLUSION;133
35.7;REFERRENCE;133
36;CHAPTER 31.
LQ-CONTROL OF SAMPLED CONTINUOUS-TIME SYSTEMS;134
36.1;INTRODUCTION;134
36.2;PROBLEM STATEMENT;134
36.3;A NUMERICAL EXAMPLE;136
36.4;AFTERSIGHT;137
36.5;REFERENCES;137
37;CHAPTER 32.
TOWARDS A STRUCTURAL SOLUTION OF THE MORGAN'S PROBLEM;138
37.1;Abstract;138
37.2;1.- Introduction;138
37.3;2.- Preliminaries;138
37.4;3. Main Results;140
37.5;References;141
38;CHAPTER 33. More about the Stable Exact Model Matching Problem and Implemertiable Transfert Mairices;142
38.1;Abstract;142
38.2;1. Introduction;142
38.3;2. Notations and preliminaries;143
38.4;3. Internal stability and implementable models;143
38.5;4. Parametrization of the implementable models;144
38.6;5. Conclusion;145
38.7;References;145
39;CHAPTER 34.
OUTPUT FEEDBACK DISTURBANCE DECOUPLING-GRAPH INTERPRETATION FOR STRUCTURED SYSTEMS;146
39.1;Abstract;146
39.2;I. INTRODUCTION;146
39.3;II. PROBLEM STATEMENT AND PRELIMINARIES;146
39.4;III. NECESSARY CONDITIONS AND SUFFICIENT CONDITIONS FOR OUTPUT FEEDBACK DISTURBANCE
DECOUPLING;147
39.5;IV. STRUCTURED SYSTEMS AND ASSOCIATED GRAPHS;147
39.6;V. GRAPH CHARACTERIZATION OF STRUCTURED OUTPUT FEEDBACK DISTURBANCE DECOUPLING;148
39.7;REFERENCES;149
40;CHAPTER 35. Recursive implementation of Willems' exact identification algorithms;150
40.1;Abstract;150
40.2;1 Introduction;150
40.3;2 Kernel structure of Hankel matrices;150
40.4;3 Recursive implementation of the modeling procedures;151
40.5;4 Conclusions;152
40.6;References;152
41;CHAPTER 36. PARAMETER TUNING OF PID CONTROL USING QUALITATIVE POLE PLACEMENT BASED ON CHARACTERISTIC GRAPHIC PATTERNS;154
41.1;Abstract:;154
41.2;PIP control;154
41.3;Graphic pattern of PID control;154
41.4;PID Control Parameter Turning Based on Graphic Pattern;155
41.5;Conclusion;156
41.6;References;157
42;CHAPTER 37.
ON THE GOOD CHOICE OF A REFERENCE MODEL;158
42.1;Abstract;158
42.2;I. INTRODUCTION;158
42.3;II. STRUCTURAL PROPERTIES OF LINEAR SYSTEMS AND DECOUPLING PROBLEM;158
42.4;III. MODEL REFERENCE BASED QUADRATIC DECOUPLING PROBLEM;158
42.5;IV. ESSENTIAL ORDERS AND SINGULAR OPTIMAL CONTROL;159
42.6;V. ON THE GOOD CHOICE OF A REFERENCE MODEL;160
42.7;VI. CONCLUDING REMARKS;160
42.8;REFERENCES;160
43;CHAPTER 38.
ROBUST FILTERING BASED ON PROBABILISTIC DESCRIPTIONS OF MODEL ERRORS;162
43.1;Abstract;162
43.2;1. INTRODUCTION;162
43.3;2. THE ESTIMATION PROBLEM;162
43.4;3. ADDITIVE PROBABILISTIC ERROR MODELS;163
43.5;4. DESIGN OF ROBUST FILTERS;163
43.6;REFERENCES;165
44;CHAPTER 39. ROBUST CONTROL AND FILTERING OF DISCRETE-TIME UNCERTAIN DYNAMICAL SYSTEMS;166
44.1;Abstract;166
44.2;1. INTRODUCTION;166
44.3;2. PROBLEM STATEMENTS;166
44.4;3. PRELIMINARIES;167
44.5;4. ROBUST STABILIZATION RESULTS;167
44.6;5. ROBUST H„ ANALYSIS AND SYNTHESIS;168
44.7;6. ROBUST H- FILTERING;169
44.8;7. CONCLUSION;169
44.9;REFERENCES;169
45;CHAPTER 40. ENERGETIC STRUCTURE OF SYSTEMS;170
45.1;Abstract;170
45.2;INTRODUCTION;170
45.3;PHASE SPACE AND PARAMETRIC REPRESENTATION;171
45.4;CONCLUDING REMARKS;173
45.5;REFERENCES;173
46;CHAPTER 41. SUFFICIENT CONDITIONS FOR THE ROBUST STABILITY OF SYSTEMS WITH MULTIAFFINE PARAMETER DEPENDENCE;174
46.1;Abstract;174
46.2;1 INTRODUCTION;174
46.3;2 THE CASE OF 2 PARAMETERS;175
46.4;3 PRELIMINARIES;175
46.5;4 THE VALUE SET FOR m-PARAMETER;175
46.6;5 REMARKS AND EXAMPLES;176
46.7;6 CONJECTURE OF HOLLOT AND XU;177
46.8;7 CONCLUSION;177
46.9;REFERENCES;177
47;CHAPTER 42. ON THE RELATION BETWEEN LOCAL AND GLOBAL LINEARIZATION OF BILINEAR SYSTEMS;178
47.1;Abstract;178
47.2;INTRODUCTION;178
47.3;BASIC DEFINITIONS AND THEOREMS;179
47.4;LOCAL LINEARIZATION IN R2;179
47.5;GLOBAL LINEARIZATION IN R2;180
47.6;LINEARIZATIONS IN R3 CASE;180
47.7;CONCLUDING REMARKS;181
47.8;REFERENCES;181
48;CHAPTER 43. Differential Geometrie Structures of Stable State Feedback Systems with Dual Connections;182
48.1;Abstract;182
48.2;1. Introduction;182
48.3;2. Preliminaries;182
48.4;3. Dual Connections on PD(n) ÷ Skew(n);184
48.5;4. Differential Geometric Structures of Stable;184
48.6;References;185
49;CHAPTER 44.
Integrators and Nonlinear Stabilization;186
49.1;Abstract;186
49.2;1 Introduction;186
49.3;2 Main results;186
49.4;References;189
50;CHAPTER 45.
ON THE CHARACTERISTIC MODES OF A RIGID BODY UNDER FORCES;190
50.1;Abstract;190
50.2;INTRODUCTION;190
50.3;MOTION UNDER NO FORCES;190
50.4;CHARACTERISTIC DIRECTIONS UNDER NO FORCES;190
50.5;CHARACTERISTIC DIRECTIONS UNDER FORCES;191
50.6;APPENDIX;192
50.7;CHARACTERISTIC NONLINEAR EQUATION;192
50.8;REFERENCES;192
51;CHAPTER 46.
LINEARIZATION OF BILINEAR MODELS WITH BOUNDED INPUTS;194
51.1;Abstract;194
51.2;INTRODUCTION;194
51.3;PROBLEM STATEMENT;194
51.4;THE BASIC CONTROL;194
51.5;EFFECTS OF THE BOUNDS;195
51.6;AN APPLICATION TO HYDRAULIC DRIVES;195
51.7;CONCLUSIONS AND OUTLOOK;197
51.8;REFERENCES;197
51.9;APPENDIX: NUMERICAL VALUES;197
52;CHAPTER 47.
Uniform boundary stabilization of a dynamical von Karman plate;198
52.1;Abstract;198
52.2;1 Introduction;198
52.3;References;201
53;CHAPTER 48.
EASY DESIGN OF DEADBEAT CONTROL USING PLANT STEP RESPONSE ONLY;202
53.1;Abstract;202
53.2;1 Statement of the Problem;202
53.3;2 How to Keep the Minimum Phase Properties;203
53.4;3 Illustrative Examples;204
53.5;4 Conclusion;204
53.6;References;205
54;CHAPTER 49.
DYNAMIC DISTURBANCE DECOURLING FOR DISCRETE TIME NONLINEAR SYSTEMS: A SOLUTION IN TERM OF SYSTEMS INVARIANTS;206
54.1;ABSTRACT;206
54.2;INTRODUCTION;206
54.3;PROBLEM STATEMENT;206
54.4;INVERSION ALGORITHSM FOR SYSTEMS WITH DISTURBANCES;206
54.5;PROBLEM SOLUTION;208
54.6;CONCLUSIONS;209
54.7;REFERENCES;209
55;CHAPTER 50. ON THE CONTROL OF A CLASS OF NONLINEAR DESCRIPTOR SYSTEMS: NON-HOLONOMIC MECHANICAL SYSTEMS;210
55.1;Abstract.;210
55.2;1 INTRODUCTION;210
55.3;2 EQUATIONS OF MOTION AND SIMULATION;210
55.4;3 OPTIMALITY CONDITIONS;211
55.5;4 BICYCLE MODEL;212
55.6;5 CONCLUSION;212
55.7;References;213
56;CHAPTER 51. NONLINEAR CONTROL OF A PLANAR MULTI AXIS SERVOHYDRAULIC TEST FACILITY;214
56.1;Abstract;214
56.2;1. INTRODUCTION;214
56.3;2 . MODELING;214
56.4;3. NONLINEAR CONTROLLER DESIGN;215
56.5;4. COMPUTER SIMULATION RESULTS;216
56.6;REFERENCES;216
57;CHAPTER 52.
STABILIZATION OF PLANAR NONLINEAR SYSTEMS;218
57.1;Abstract;218
57.2;1 Introduction;218
57.3;2 C1stabilizability: Bilinear approach;218
57.4;3 C1-stabilization of some critical cases;220
57.5;References;221
58;CHAPTER 53. Practical Stabilization of Nonlinear Control Systems;222
58.1;Abstract;222
58.2;Introduction;222
58.3;Practical Stabilization;223
58.4;Design of the Controller;223
58.5;Simple Decomposition;225
58.6;Concluding Remarks;225
58.7;References;225
59;CHAPTER 54. THE EFFECT OF THE HEAT EXCHANGER NETWORK TOPOLOGY ON THE NETWORK CONTROL PROPERTIES;226
59.1;Abstract;226
59.2;INTRODUCTION;226
59.3;HEAT EXCHANGER NETWORK SYNTHESIS METHODS AND THE RESULTED NETWORKS;226
59.4;CONSTRUCTION OF OVERALL SYSTEM MATRICES FROM UNIT MATRICES AND NETWORK TOPOLOGY;227
59.5;DYNAMICS OF HEAT EXCHANGER SUPERSTRUCTURE;228
59.6;STRUCTURAL CONTROL PROPERTIES;229
59.7;CONCLUSIONS;229
59.8;ACKNOWLEDGEMENT;229
59.9;REFERENCES;229
60;CHAPTER 55.
REDUCTION OF STRUCTURAL COMPLEXITY;230
60.1;Abstract;230
60.2;INTRODUCTION;230
60.3;PROCEDURE;231
60.4;RESULTS AND DISCUSSION;232
60.5;CONCLUSION;233
60.6;REFERENCES;233
61;CHAPTER 56.
LOGIC GEOMETRY AND ALGEBRA IN MODELING;234
61.1;Abstract.;234
61.2;1 Introduction;234
61.3;2 From Experiment to Logic;234
61.4;3 From Logic to Geometry;236
61.5;4 From Geometry to Algebra;236
61.6;5 From Measures to Models;237
61.7;6 Conclusions;237
61.8;References;237
62;CHAPTER 57. CENTER MANIFOLD THEORY FOR. STABILIZING A FLEXIBLE MECHANICAL SYSTEM WITH A PITCHFORK BIFURCATION;238
62.1;Abstract;238
62.2;1 Introduction;238
62.3;2 Dynamical equations of the system, an open-loop pitchfork bifurcation;238
62.4;3 Center manifold theory;239
62.5;4 A stabilizing control law for the in verted pendulum whenk=ko;240
62.6;5 Simulation results and conclusion;241
62.7;References;241
63;CHAPTER 58. ON GEOMETRIC INVARIANTS IN NONINTERACTING CONTROL VIA DYNAMIC STATE-FEEDBACK;242
63.1;Abstract;242
63.2;I. A review of some basic results and definition;242
63.3;II. A geometric concept of regular dynamic state–feedback law;243
63.4;III. Invariant subdynamics in noninteracting control with stability;244
63.5;Acknowledgements;245
63.6;References;245
64;CHAPTER 59. Some Structural Aspects in the Control of Nonholonomic Systems via Dynamic Compensation;246
64.1;Abstract;246
64.2;1 Introduction;246
64.3;2 Control Approaches;247
64.4;3 Results;248
64.5;Acknowledgments;249
64.6;References;249
65;CHAPTER 60.
ON THE DECOUPLED CANONICAL FORMS FOR NONLINEAR SYSTEMS;250
65.1;Abstract;250
65.2;INTODUCTION;250
65.3;THE MATHEMATICAL MODEL;250
65.4;AN ILLUSTRATIVE EXAMPLE : 2nd STEP;251
65.5;CONCLUSION;252
65.6;REFERENCES;252
66;CHAPTER 61. KRONECKER'S CANONICAL FORMS FOR NONLINEAR IMPLICIT DIFFERENTIAL SYSTEMS;254
66.1;Abstract;254
66.2;1 Introduction;254
66.3;2 Inversion;254
66.4;3 Canonical form;255
66.5;4 Concluding remarks;257
66.6;References;257
67;CHAPTER 62.
Disturbance Decoupling for Nonlinear Systems : a Unified Approach;258
67.1;ABSTRACT;258
67.2;1. INTRODUCTION;258
67.3;2. MAIN RESULT;260
67.4;3.CONCLUSION;261
67.5;REFERENCES;261
68;CHAPTER 63.
DYNAMIC CONTROL LABILITY DISTRIBUTIONS IN NONLINEAR SYSTEMS;262
68.1;Abstract;262
68.2;REFERENCES;264
69;CHAPTER 64. CONTROL TECHNIQUES FOR CHAOTIC DYNAMICAL SYSTEMS;266
69.1;Abstract;266
69.2;1. INTRODUCTION;266
69.3;2. THE HB TECHNIQUE FOR ANALYSING COMPLEX SYSTEMS;267
69.4;3. THE HB TECHNIQUE FOR THECONTROL OF COMPLEX SYSTEMS;268
69.5;REFERENCES;269
70;CHAPTER 65. BILINEAR SYSTEMS AS THE STRONGLY NONLINEAR SYSTEMS;270
70.1;Abstract;270
70.2;INTRODUCTION;270
70.3;ANALYTICAL RESULTS;271
70.4;NUMERICAL RESULTS;272
70.5;CONCLUSIONS;273
70.6;REFERENCES;273
71;CHAPTER 66. Model Reduction Methods for Chaotic Systems;274
71.1;Abstract:;274
71.2;Introduction;274
71.3;General Issues in the Model Reduction of Chaotic Systems;274
71.4;Available Methods and Example Applications;275
71.5;Conclusions;276
71.6;References;277
72;CHAPTER 67. FEEDBACK CONTROL FOR LINEAR CHAOTIC SYSTEMS;278
72.1;Abstract;278
72.2;References;279
73;CHAPTER 68. BIFURCATIONS AND CHAOS IN A PERIODICALLY FORCED PROTOTYPE ADAPTIVE CONTROL SYSTEM;280
73.1;Abstract;280
73.2;INTRODUCfION;280
73.3;SYSTEM DESCRIPTION;280
73.4;BIFURCATION ANALYSIS;280
73.5;CONCLUSIONS;282
73.6;REFERENCES;283
74;CHAPTER 69. A STUDY OF IDENTIFICATION AND CONTROL IN A REAL IMPLEMENTATION OF CHUA'S CIRCUIT;284
74.1;Abstract;284
74.2;INTRODUCTION;284
74.3;CHUA' S CIRCUIT;284
74.4;CHAOS CONTROL STRATEGY;285
74.5;LABORATORY SETUP;286
74.6;THE SOFTWARE PAKAGE;286
74.7;CONCLUSIONS;287
74.8;ACKNOWLEDGEMENT;287
74.9;REFERENCES;287
75;CHAPTER 70. SYNTHESIS OF A ROBUST SUBOPTIMAL CONTROLLER BASED ON THE OPTIMALITY MINIMAX CRITERIA;288
75.1;Abstract;288
75.2;INTRODUCTION;288
75.3;REFERENCE;289
76;CHAPTER 71. ROBUST ADAPTIVE CONTROL DESIGN FOR DELTA OPERATOR SYSTEMS M.A. HERSH, DEPT. OF ELECTRONICS AND ELECTRICAL ENGINEERING, UNIVERSITY OF GLASGOW, SCOTLAND;290
76.1;INTRODUCTION;290
76.2;DISCUSSION OF ROBUSTNESS ISSUES;290
76.3;CONTROL DESIGN;292
76.4;CONCLUSIONS;292
76.5;REFERENCES;292
76.6;APPENDICES;293
77;CHAPTER 72. NONINTERACTING CONTROL IN SYSTEMS WITH PERTURBATIONS;294
77.1;ABSTRACT;294
77.2;1. INTRODUCTION;294
77.3;2. BOUNDS FOR THE STEP RESPONSE;294
77.4;3. THE TRANSFER FUNCTION MATRIX OF THE PERTURBED SYSTEM;296
77.5;4. SELECTION OF THE ADDITIONAL VECTORS OF VCs);296
77.6;5. CONCLUSIONS;297
77.7;REFERENCES;297
78;CHAPTER 73. THE H8 CONTROL PROBLEM FOR CONTINUOUS-TIME LINEAR PERIODIC SYSTEMS;298
78.1;Abstract;298
78.2;INTRODUCTION;298
78.3;PRELIMINARY RESULTS;298
78.4;MAIN RESULT;299
78.5;REFERENCES;301
79;CHAPTER 74. REDUCTION OF INPUT CHATTERING OF AROBUST CONTROLLER FOR UNCERTAIN LINEAR SYSTEMS — A PROPOSAL OF FICTITIOUS SET POINT —;302
79.1;Abstract;302
79.2;1. Introduction;302
79.3;2. Problem statement;302
79.4;3. Robust controller by using FSP;303
79.5;4. Remarks;304
79.6;5. Simulated examples;304
79.7;6. Conclusion;305
79.8;References;305
80;CHAPTER 75. Equivalent Transformation of the Framework of Normalized Robust Control Systems;306
80.1;Abstract;306
80.2;1. Introduction;306
80.3;2. LFTs and CSDs;306
80.4;3. J-lossless Factorization Theory;307
80.5;4. Solutions to Normalized Robust Stabilization;308
80.6;5. Conclusions;309
80.7;References;309
81;CHAPTER 76. Robust Stabilization Problem for a System with Delays in Control;310
81.1;Abstract;310
81.2;1. Introduction;310
81.3;2. Problem Formulation;310
81.4;3. An H8-problem for Time Delay Systems;311
81.5;4. Robust Stabilization Problem;312
81.6;5. Conclusion;313
81.7;References;313
82;CHAPTER 77. ROBUST SLIDING MODE CONTROL SERVO SYSTEMS;314
82.1;Abstract;314
82.2;INTRODUCTION;314
82.3;SLIDING MODE FOR SERVO SYSTEMS;314
82.4;MULTI-SLIDING MODE REGIME;315
82.5;SIMULATION RESULTS;316
82.6;CONCLUSION;317
82.7;REFERENCES;317
83;CHAPTER 78. EXTERNAL REACHABILITY FOR IMPLICIT DESCRIPTIONS;318
83.1;Abstract;318
83.2;1- Introduction;318
83.3;2- External Reachability;319
83.4;3- Concluding Remarks;320
83.5;4- Illustrative Example;320
83.6;References;320
83.7;APPENDIX A;321
83.8;APPENDIX B;321
84;CHAPTER 79. AN ALGEBRAIC DEFINITION OF TIME-VARYING TRANSFER MATRICES;322
84.1;Abstract;322
84.2;1 Introduction;322
84.3;2 Laplace functor, transfer vector spaces and matrices;322
84.4;3 Transfer algebra;323
84.5;4 Decomposition of transfer matrices : controllability,observability and realization;323
84.6;5 Input-output inversion and model-matching;324
84.7;References;324
85;CHAPTER 80. Impulsive-smooth Behaviors;326
85.1;1 Introduction;326
85.2;2 The distributional frame work;326
85.3;3 First-order representations;327
85.4;4 Polynomial representations;328
85.5;5 State space isomorphism;328
85.6;6 Conclusions;329
85.7;References;329
86;CHAPTER 81. REMARKS ON INPUT-ACCEPTANCE, OUTPUT-UNIQUENESS FOR IMPLICIT LINEAR SYSTEMS AND THEIR INTERPRETATION FOR THE VON NEUMANN MODEL OF ECONOMY;330
86.1;Abstract;330
86.2;INTRODUCTION;330
86.3;NOTATION AND AUXILIARY RESULTS;330
86.4;INPUT-ACCEPTANCE PROPERTIES;331
86.5;OUTPUT-UNIQUENESS PROPERTIES: THE DUALITY RELATIONSHIP;332
86.6;INPUT-ACCEPTANCE AND OUTPUT-UNIQUENESS IN LINEAR MODELS OF ECONOMY;332
86.7;REFERENCES;333
87;CHAPTER 82. REMARKS ON IMFLICIT LINEAR CONTINUOUS-TIME SYSTEMS;334
87.1;Abstract;334
87.2;0. Introduction;334
87.3;1. BasIc notatIon;334
87.4;2. Smooth-impulsive solutions of implicit linear dIfferential .equations;335
87.5;3. Spaces or admissible lnltial conditions;335
87.6;References;337
88;CHAPTER 83. STRUCTURAL PROPERTIES OF SINGULAR SYSTEMS PART 2 : OBSERVABILITY AND DUALITY;338
88.1;Abstract;338
88.2;I. INTRODUCTION AND PRELIMINARIES;338
88.3;II. OBSERVABILITY AND CONSTRUCTABILITY;338
88.4;REFERENCES;340
89;CHAPTER 84. AN EXTERIOR ALGEBRA BASED CHARACTERIZATION OF THE FUNDAMENTAL SUBSPACES OF SINGULAR SYSTEMS;342
89.1;Abstract;342
89.2;1. INTRODUCTION;342
89.3;2. PROBLEM STATEMENT AND PRELIMINARY RESULTS;342
89.4;3. BACKGROUND FROM EXTERIOR ALGEBRA;343
89.5;4. EXTERIOR ALGEBRA CHARACTERIZATION OF MATRIX PENCIL INVARIANTS;344
89.6;5. EXTERIOR ALGEBRA BASED CHARACTERIZATION OF INVARIANT SUBSPACES;345
89.7;6. NECESSARY CONDITIONS FOR POSSIBLE DIMENSION OF FAMILIES OF SUBSPACES;345
89.8;7. CONCLUSIONS;345
89.9;REFERENCES;345
90;CHAPTER 85. INFINITE ZEROS FOR LINEAR SYSTEMS WITH DELAYS . APPLICATION TO MODEL MATCHING OR DISTURBANCE REJECTION;346
90.1;Abstract;346
90.2;Introduction;346
90.3;1- Smith-McMilian Form at Infinity and Model Matching;346
90.4;2- State Space Representations of Systems with delays and Partial Disturbance Decoupling;347
90.5;References;349
91;CHAPTER 86. STRUCTURAL PROPERTIES OF SINGULAR SYSTEMS PART 1: CONTROLLABILITY;350
91.1;Abstract;350
91.2;I. INTRODUCTION AND PRELIMINARIES;350
91.3;II. CONTROLLABILITY AND REACHABILITY;352
91.4;REFERENCES;353
92;CHAPTER 87. A MATRIX PENCIL APPROACH TO THE COVER PROBLEM FOR LINEAR SYSTEMS;354
92.1;ABSTRACT;354
92.2;1. INTRODUCTION;354
92.3;2. PRELIMINARY DEFINITIONS AND STATEMENT OF THE PROBLEM;354
92.4;3. KRONECKER INVARIANT TRANSFORMATION BY MATRIX PENCIL AUGMENTATION;355
92.5;4. THE MATRIX PENCIL REALIZATION PROBLEM;356
92.6;5. LEFT REGULAR SOLUTIONS AND THE OVERALL COVER ·PROBLEM;356
92.7;6. CONCLUSIONS;357
92.8;REFERENCES;357
93;CHAPTER 88. USE OF MATRIX PENCILS FOR PARAMETER IDENTIFICATION IN ANALOG CIRCUITS;358
93.1;Abstract.;358
93.2;I. INTRODUCTION;358
93.3;II. PARAMETER IDENTIFICATION WITH SINGLE MEASUREMENT SET;358
93.4;III. PARAMETER IDENTIFICATION WITH MULTIPLE MEASUREMENT SET;359
93.5;IV. USE OF THE GLOBAL IMPLICIT FUNCTION THEOREM IN THE CASE OF INSUFFICIENT MEASUREMENTS;360
93.6;COKCLUSIQNS;361
93.7;REFERENCES;361
94;CHAPTER 89. On a Fundamental Notion of Equivalence in Linear Systems Theory;362
94.1;Abstract;362
94.2;1. Introduction;362
94.3;2. Preliminary Results;362
94.4;3. Mappings of Solution Sets;363
94.5;4. Fundamental Equivalence;364
94.6;5. Conclusions;365
94.7;References;365
95;CHAPTER 90. Simultaneous Output-Feedback Stabilization For Continuous Systems;366
95.1;Abstract;366
95.2;Introduction;366
95.3;Simultaneous Control Results;367
95.4;Conclusions;368
95.5;References;368
96;CHAPTER 91. A CAD SYSTEM FOR NONLINEAR DYNAMIC COMPENSATORS USING "Mathematica";370
96.1;Abstract;370
96.2;1 INTRODUCTION;370
96.3;2 NONLINEAR DYNAMIC COMPENSA TOR;370
96.4;3 CAD SYSTEM;371
96.5;4 EXAMPLE;373
96.6;5 CONCLUSIONS;373
96.7;REFERENCES;373
97;CHAPTER 92. THE PROCESS STABILIZATION IN THE ELECTROLYTIC PRODUCTION OF ALUMINIUM;374
97.1;Abstract;374
97.2;INTRODUCTION;374
97.3;TECHNOLOGICAL STATE ESTIMATOR OF THE PROCESS;374
97.4;THE TECHNOLOGICAL PROCESS CONTROL;376
97.5;CONCLUSION;377
97.6;REFERENCES;377
98;CHAPTER 93. LOOP SHAPING H8 DESIGN: APPLICATION TO THE ROBUST STABILIZATION OF AN HELICOPTER;378
98.1;Abstract.;378
98.2;I. INTRODUCTION;378
98.3;2. HELICOPTER MODEL AND UNCERTAINTIES;378
98.4;3. THE LOOP SHAPING H8 DESIGN;378
98.5;4. CONTROLLER REDUCTION;379
98.6;5. THE HELICOPTER WITH THE LOOP SHAPING H8 DESIGN;379
98.7;6. CONCLUSION;380
98.8;7. REFERENCES;380
99;CHAPTER 94. Digital multivariable control of active magnetic bearings;382
99.1;ABSTRACT;382
99.2;I - INTRODUCTION;382
99.3;II - MECHANICAL MODEL;383
99.4;Ill - CONTROL STRUCTURE DESIGN;384
99.5;IV - ACTUATOR INVERSION;384
99.6;V - COMMENTED RESULTS;385
99.7;VI-CONCLUSION;385
99.8;VII - BIBLIOGRAPHY;385
100;CHAPTER 95. Eigenstructurc approximations and their use for commutative controllers strategy : application to a helicopter;386
100.1;Abstract;386
100.2;NOTATIONS;386
100.3;INTRODUCTION;386
100.4;METHODOLOGY;386
100.5;CONCLUSION;389
100.6;REFERENCES;389
101;CHAPTER 96. CONTROL OF AN ELECTROMECHANICAL DRIVE USING V.S.S.C. WITH DUBIOUS PARAMETERS;390
101.1;Abstract;390
101.2;1 - INTRODUCTION;390
101.3;2 · ELECTROMECHANICAL PLANT;390
101.4;3 - SERVO-CONTROL STUDY;390
101.5;4 - Expérimentations;392
101.6;5 - CONCLUSION;393
101.7;REFERENCES;393
101.8;APPENDIX;393
102;CHAPTER 97. ON THE LINEAR QUADRATIC ADAPTIVE CONTROL FOR THE DESIGN OF MISSILE AUTOPILOTS;394
102.1;ABSTRACT;394
102.2;1. INTRODUCTION;394
102.3;2 . PROBLEM STATEMENT;394
102.4;3. THE LINEAR QUADRATIC ROBUST ADAPTIVE CONTROLLER;394
102.5;4. EXPERIMENTAL RESULTS;396
102.6;5. CONCLUSION;396
102.7;REFERENCES;396
103;CHAPTER 98. NUMERICAL ALGORITHMS AND SOFTWARE TOOLS FOR ANALYSIS AND MODELLING OF DESCRIPTOR SYSTEMS;398
103.1;Abstract;398
103.2;INTRODUCTION;398
103.3;SIMILARITY TRANS FORMATIONS;398
103.4;ANALYSIS OF DESCRIPTOR SYSTEMS;399
103.5;MODELLING OF DESCRIPTOR SYSTEMS;400
103.6;INTERACTIVE SOFTWARE TOOLS;400
103.7;CONCLUSIONS;400
103.8;REFERENCES;401
104;CHAPTER 99. Algebraic Design of Linear Multivariable Systems. Use of Symbolic Computation (Mathematica);402
104.1;Abstract;402
104.2;1. Introduction;402
104.3;2. The main functions of the package;402
104.4;3. The solutions of some classical control problems;403
104.5;4. Conclusion;404
104.6;References;404
105;CHAPTER 100. On the structure of finite memory and separable 2D systems;406
105.1;Abstract;406
105.2;1 Introduction;406
105.3;2 Finite memory and separable systems;406
105.4;3 Inverse systems;408
105.5;4 References;409
106;CHAPTER 101. STABILITY OF NONCONVOLUTIONAL n-D SYSTEMS;410
106.1;Abstract;410
106.2;Introduction;410
106.3;Difference equation of the first order;411
106.4;Systems of difference equations;412
106.5;References;412
107;CHAPTER 102. FLOQUET-LAPUNOV TRANSFORMATION FOR 2-D PERIODIC LINEAR SYSTEM;414
107.1;Abstract;414
107.2;INTRODUCTION;414
107.3;PROBLEM FORMULATION;414
107.4;PROBLEM SOLUTION;415
107.5;TRANSFORMATION OF THE MODEL TO ITS CANONICAL FORM;416
107.6;CONCLUDING REMARKS;417
107.7;REFERENCES;417
108;CHAPTER 103. INVERSES OF n-D POLYNOMIAL MATRICES;418
108.1;Abstract;418
108.2;INTRODUCTION;418
108.3;INVERSES OF SCALAR CAUSAL POLYNOMIALS;418
108.4;INVERSES OF CAUSAL POLYNOMIAL MATRICES;418
108.5;INVERSES OF SCALAR NON-CAUSAL POLYNOMIALS;419
108.6;INVERSES OF NON-CAUSAL POLYNOMIAL MATRICES;420
108.7;REFERENCES;421
109;CHAPTER 104. MAREPRESENTATION OF /2 2D SYSTEMS;422
109.1;Abstract;422
109.2;INTRODUCTION;422
109.3;PRELIMINARIES;422
109.4;REPRESENTATION OF /2 A R SYSTEMS;423
109.5;CONCLUSIONS;424
109.6;References;424
110;CHAPTER 105. 2D Transfer-Functions Based Controller Design for Differential Linear Repetitive Processes;426
110.1;Abstract;426
110.2;1. Introduction;426
110.3;2. Systems Representations;426
110.4;3. Stability;426
110.5;4. Control objectives and structures;427
110.6;5. Controller Design - some preliminary results;428
110.7;6. Conclusions;429
110.8;References;429
111;CHAPTER 106. On the Design of Practically-Stable nD Feedback Systems;430
111.1;Abstract;430
111.2;1. INTRODUCTION;430
111.3;2. PRACTICAL-BIBO STABILITY;430
111.4;3. FEEDBACK PRACTICAL-STABILIZATION BY ALGEBRAIC METHOD;430
111.5;4. FEEDBACK PRACTICAL-STABILIZATION BY STATE-SPACE APPROACH;432
111.6;5. A CONNECTION BETWEEN STATE SPACE AND DOUBLY COPRIME MFD;433
111.7;6. CONCLUDING REMARKS;433
111.8;REFERENCES;433
112;CHAPTER 107. Exact Modelling of Finite 2D Arrays;434
112.1;Abstract;434
112.2;1 Introduction;434
112.3;2 Behavioural theory of dynamics;434
112.4;3 Exact modelling of finite 2D scalar arrays;435
112.5;References;437
113;CHAPTER 108. 2-D System Structure and Applications;438
113.1;ABSTRACT;438
113.2;1. Introduction;438
113.3;2. 2 -D Coprimeness;438
113.4;3. Matrix Fraction Descriptions;438
113.5;4. General Polynomial Realisations;439
113.6;5. Linear Differential Unit Memory Processes;441
113.7;6. Conclusions;441
113.8;7. References;441
114;CHAPTER 109. ON VARIOUS INTERPRETATIONS OF ROSENBROCK'S THEOREM;442
114.1;Abstract.;442
114.2;Introduction;442
114.3;Rosenbrock's Theorem;442
114.4;Various Formulations of Rosenbrock's Theorem;442
114.5;Model Matching;444
114.6;Conclusions;445
114.7;References;445
115;CHAPTER 110. EIGENSTRUCTURE ASSIGNMENT BY P AND PD STATE FEEDBACK IN LINEAR SINGULAR SYSTEMS;446
115.1;Abstract.;446
115.2;Introduction;446
115.3;Basic concepts;446
115.4;Eigenstructure assignment by P state feedback;447
115.5;Eigenstructure assignment by PD state feedback;448
115.6;References;448
116;CHAPTER 111. ROSENBROCK'S THEOREM FOR NONCONTROLLABLE SYSTEMS AND MATRIX COMPLETION PROBLEMS;450
116.1;Abstract;450
116.2;1. INTRODUCTION;450
116.3;2. RESULTS;451
116.4;References;452
117;CHAPTER 112. A CHARACTERIZATION OF FEEDBACK EQUIVALENCE BASED ON A GENERALIZATION OF ROSENBROCK'S THEOREM;454
117.1;Abstract;454
117.2;1. INTRODUCTION;454
117.3;2. MAIN RESULT;454
117.4;3. NOTATION;454
117.5;4. STATE FEEDBACK;455
117.6;References;455
118;CHAPTER 113. FEED BACK EQUIVALENCE BY RANK TESTS;456
118.1;Abstract;456
118.2;1. INTRODUCTION;456
118.3;2. MAIN RESULT;457
118.4;References;457
119;CHAPTER 114. A STATE-SPACE REALIZATION FORM OF MULTI-INPUT MULTI-OUTPUT TWO-DIMENSIONAL SYSTEMS;458
119.1;Abstract;458
119.2;INTRODUCTION;458
119.3;II. VARIOUS CONSIDERATION;460
119.4;III. EXISTENCE OF STATE-SPACE REALIZATION;460
119.5;IV. CONCLUSION;461
119.6;REFERENCES;461
120;CHAPTER 115. DISCRETE-TIME T1ME-YAKYINC EXACT MODEL MATCHING AND ADAPTIVE CONTKOL;462
120.1;Abstract;462
120.2;INTRODUCTION;462
120.3;TIME DOMAIN POLE ASSIGNMENT;462
120.4;FREQUENCY DOMAIN EMM;463
120.5;ADAPTIVE CONTROL;464
120.6;CONCLUSIONS;464
120.7;REFERENCES;465
121;CHAPTER 116. THE LINEAR-QUADRATIC OPTIMAL REGULATOR OF TIME-INVARIANT DISCRETE SINGULAR SYSTEMS;466
121.1;Abstract;466
121.2;INTRODUCTION;466
121.3;SOLUTION OF THE LQ PROBLEM;467
121.4;CONCLUSION;469
121.5;REFERENCES;469
122;CHAPTER 117. DECOUPLING BY STATE FEEDBACK IN SINGULAR SYSTEHS;470
122.1;Abstract;470
122.2;1. INTRODUCTION;470
122.3;2. PROBLEM FORMULATION;470
122.4;III. DECOUPLING PROBLEM;472
122.5;IV. CONCLUSION;473
122.6;REFERENCES;473
123;CHAPTER 118. TRANSFER FUNCTION OF LINEAR DISCRETE TIME-VARYING SYSTEMS VIA NON-COMMUTATIVE ALGEBRA;474
123.1;Abstract:;474
123.2;I-INTRODUCTION;474
123.3;II-NON-COMMUTATIVE POLYNOMIALS;475
123.4;III- RATIONAL FRACTION;475
123.5;IV - SYSTEMS V. TRANSFER FUNCTION;475
123.6;V - 1: Definition;476
123.7;VI-CONCLUSION;477
123.8;REFERENCES;477
124;CHAPTER 119. THE LINEAR CONSTRAINED REGULATION PROBLEM FOR SOME LINEAR CONTINUOUS-TIME SINGULAR SYSTEMS;478
124.1;Abstract;478
124.2;1 Introduction;478
124.3;2 Preliminary results on positive invariance;478
124.4;3 Positive invariance of dissymmetrical polyhedra;479
124.5;4 An application to the input constrained problem;480
124.6;References;481
125;CHAPTER 120. A Deadbeat Controller for Time Varying Plant Following the Reference Model Output;482
125.1;Abstract;482
125.2;1. Introduction;482
125.3;2. Controller Configuration with two free parameters;482
125.4;3. Analysis of model matching closed system;483
125.5;4. Numerical Examples;484
125.6;5. Conclusion;484
125.7;References;484
126;CHAPTER 121. Commutation of Polynomial Coefficients on Finite Time Horizon;486
126.1;Abstract;486
126.2;Introduction;486
126.3;Notation;486
126.4;Nonstationary operators;486
126.5;Problem formulation;488
126.6;Commutation of polynomials in shift operators;488
126.7;Commutation of polynomials in difference operators;488
126.8;Conclusions;489
126.9;Appendix;489
126.10;References;489
127;CHAPTER 122. OPEN LOOP DIAGONAL DOMINANCE IN THE PRESENCE OF UNCERTAINTIES;490
127.1;ABSTRACT;490
127.2;NOTATION;490
127.3;I. INTRODUCTION;490
127.4;II. PROBLEM FORMULATION;490
127.5;III. DIAGONAL DOMINANCE IN THE PRESENCE OF UNCERTAINTIES;491
127.6;IY EXAMPLE;492
127.7;V CONCLUSIONS.;493
127.8;REFERENCES;493
128;CHAPTER 123. Interpretations of the gap topology: a survey;494
128.1;1 Basic definitions;494
128.2;2 Equivalence of pointwise gap and graph topologies;495
128.3;3 Equivalence of dsup, OH and OII;496
128.4;4 Equivalence of On, OH and dH2;496
128.5;5 Equivalence of dH2 and OL2;497
128.6;References;498
129;CHAPTER 124. Controlling Chaos and Targeting in aThermal Convection Loop;500
129.1;Abstract;500
129.2;1. Introduction;500
129.3;2. Thermal Convection Loop Model;500
129.4;3. Bifurcation Control of Convection;501
129.5;4. Concluding Remarks;503
129.6;Acknowledgment;503
129.7;References;503
130;CHAPTER 125. A SPESCIAL ANALOG COMPUTER FOR DIRECT STATE SPACE FORMULATION (A, B, C, D);504
130.1;Abstract;504
130.2;INTRODUCTION;504
130.3;2 . MODELING THROUGH STATE VARIABLES;505
130.4;REFERENCES;506
131;AUTHOR'S INDEX;508



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.