Stolovitzky / Califano | Reverse Engineering Biological Networks | Buch | 978-1-57331-689-7 | www2.sack.de

Buch, Englisch, 452 Seiten, Format (B × H): 155 mm x 229 mm, Gewicht: 490 g

Stolovitzky / Califano

Reverse Engineering Biological Networks

Opportunities and Challenges in Computational Methods for Pathway Inference, Volume 1118
1. Auflage 2007
ISBN: 978-1-57331-689-7
Verlag: Wiley

Opportunities and Challenges in Computational Methods for Pathway Inference, Volume 1118

Buch, Englisch, 452 Seiten, Format (B × H): 155 mm x 229 mm, Gewicht: 490 g

ISBN: 978-1-57331-689-7
Verlag: Wiley


Computational biologists are striving to "reverse engineer" the underlying networks of interactions between the molecules in the cell. This volume and the conference it reports on attempt a systematic evaluation of reverse engineering methods. The DREAM project brings together a diverse group of researchers to clarify potentials and limitations of the enterprise of reverse engineering cellular networks. An important aspiration of the project is to compare the effectiveness of different methods in reverse engineering biological networks. Evaluating this requires a "gold standard" network for which at least the true topology of connections is known. Many participants, especially the computational biologists, believe that synthetic networks are good candidates for this purpose because, at least for now, only they can be described with certainty. Experimental biologists, however, worry that unless the project addresses real biological networks, it could evolve into a mathematical exercise with little impact on biology. These and other ideas are discussed.

NOTE: Annals volumes are available for sale as individual books or as a journal. For information on institutional journal subscriptions, please visit www.blackwellpublishing.com/nyas.

ACADEMY MEMBERS: Please contact the New York Academy of Sciences directly to place your order (www.nyas.org). Members of the New York Academy of Science receive full-text access to the Annals online and discounts on print volumes. Please visit http://www.nyas.org/MemberCenter/Join.aspx for more information about becoming a member

Stolovitzky / Califano Reverse Engineering Biological Networks jetzt bestellen!

Weitere Infos & Material


Preface: Gustavo Stolovitzky.

Part I: Community Efforts for Pathway Inference:.

1. Dialogue on Reverse Engineering Assessment and Methods: the DREAM of High Throughput Pathway Inference: Gustavo Stolovitzky, Don Monroe, Andrea Califano.

2. ENFIN - A Network to Enhance Integrative Systems Biology: Pascal Kahlem and Ewan Birney.

Part II: Overview of Reverse Engineering Methods: Experiment and Theory:.

3. Reconstructing Signal Transduction Pathways: Challenges and Opportunities: Arnold J. Levine, Wenwei Hu, Zhaohui Feng and German Gil.

4. Theory and Limitations of Genetic Network Inference from Microarray Data: Adam A. Margolin and Andrea Califano.

Part III: Establishing In-Silico and Experimental Gold Standards and Performance Metrics for Reverse Engineering:.

5. Comparison of Reverse Engineering Methods Using an In-Silico Network: Diogo Camacho, Paola Vera Licona, Pedro Mendes and Reinhard Laubenbacher.

6. Benchmarking of Dynamic Bayesian Networks From Stochastic Time-Series Data: Lawrence A. David and Chris H. Wiggins.

7. Reconstruction of Metabolic Networks from High-throughput Metabolite Profiling Data: In-Silico Analysis of Red Blood Cell Metabolism: Ilya Nemenman, G. Sean Escola, William S. Hlavacek, Pat J. Unkefer,Clifford J. Unkefer and Michael E. Wall.

8. The Gap Gene System of Drosophila Melanogaster: Model-fitting and Validation: Theodore J. Perkins.

Part IV: Theoretical Analyses of Reverse Engineering Algorithms:.

9. Algorithmic Issues in Reverse Engineering of Protein and Gene Networks via the Modular Response Analysis Method: Piotr Berman, Bhaskar DasGupta, and Eduardo Sontag.

10. Data Requirements of Reverse-engineering Algorithms: Winfried Just.

Part V: Some Reverse Engineering Algorithms:.

11. Improving Protein-Protein Interaction Prediction based on Phylogenetic Information using Least-Squares SVM: Roger A. Craig and Li Liao.

12. Reverse-Engineering of Dy


Gustavo Stolovitzky is the editor of Reverse Engineering Biological Networks: Opportunities and Challenges in Computational Methods for Pathway Inference, Volume 1118, published by Wiley. Andrea Califano is the editor of Reverse Engineering Biological Networks: Opportunities and Challenges in Computational Methods for Pathway Inference, Volume 1118, published by Wiley.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.