E-Book, Englisch, 822 Seiten
Reihe: Physics and Astronomy (R0)
Stöhr / Siegmann Magnetism
1. Auflage 2007
ISBN: 978-3-540-30283-4
Verlag: Springer Berlin Heidelberg
Format: PDF
Kopierschutz: 1 - PDF Watermark
From Fundamentals to Nanoscale Dynamics
E-Book, Englisch, 822 Seiten
Reihe: Physics and Astronomy (R0)
ISBN: 978-3-540-30283-4
Verlag: Springer Berlin Heidelberg
Format: PDF
Kopierschutz: 1 - PDF Watermark
This text book gives a comprehensive account of magnetism, one of the oldest yet most vibrant fields of physics. Perhaps uniquely, it discusses spin transport and magnetization dynamics phenomena associated with atomically and spin engineered nano-structures. It does this against the backdrop of spintronics and magnetic storage and memory applications. In addition to summarizing developments in this new field of research the book also discusses magnetism applying synchrotron radiation. In short, the book reviews the fundamental physical concepts of the subject and uses them in a coherent fashion to explain some of the problems and applications at the forefront of magnetism. The book is written for undergraduate and graduate level students, and it should also serve as a state-of-the-art reference for scientists in academia and research laboratories.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;7
2;Contents;9
3;1 Introduction;18
3.1;1.1 Magnetism: Magical yet Practical;18
3.2;1.2 History of Magnetism;20
3.3;1.3 Magnetism, Neutrons, Polarized Electrons, and X- rays;29
3.4;1.4 Developments in the Second Half of the 20th Century;42
3.5;1.5 Some Thoughts about the Future;47
3.6;1.6 About the Present Book;49
4;Part I Fields and Moments;54
4.1;2 Electric Fields, Currents, and Magnetic Fields;55
4.1.1;2.1 Signs and Units in Magnetism;55
4.1.2;2.2 The Electric Field;55
4.1.3;2.3 The Electric Current and its Magnetic Field;56
4.1.4;2.4 High Current Densities;61
4.1.5;2.5 Magnetic and Electric Fields inside Materials;63
4.1.6;2.6 The Relation of the Three Magnetic Vectors in Magnetic Materials;65
4.1.7;Hd;65
4.1.8;M B;65
4.1.9;2.7 Symmetry Properties of Electric and Magnetic Fields;73
4.2;3 Magnetic Moments and their Interactions with Magnetic Fields;77
4.2.1;3.1 The Classical Definition of the Magnetic Moment;77
4.2.2;3.2 From Classical to Quantum Mechanical Magnetic Moments;80
4.2.3;3.3 Magnetic Dipole Moments in an External Magnetic Field;84
4.2.4;3.4 The Energy of a Magnetic Dipole in a Magnetic Field;85
4.2.5;3.5 The Force on a Magnetic Dipole in an Inhomogeneous Field;88
4.2.6;3.6 The Torque on a Magnetic Moment in a Magnetic Field;100
4.2.7;3.7 Time–Energy Correlation;113
4.3;4 Time Dependent Fields;120
4.3.1;4.1 Overview;120
4.3.2;4.2 Basic Concepts of Relativistic Motion;121
4.3.3;4.3 Fields of a Charge in Uniform Motion: Velocity Fields;124
4.3.4;4.4 Acceleration Fields: Creation of EM Radiation;136
4.4;5 Polarized Electromagnetic Waves;155
4.4.1;5.1 Maxwell’s Equations and their Symmetries;156
4.4.2;5.2 The Electromagnetic Wave Equation;157
4.4.3;5.3 Intensity, Flux, Energy, and Momentum of EM Waves;159
4.4.4;5.4 The Basis States of Polarized EM Waves;161
4.4.5;5.5 Natural and Elliptical Polarization;169
4.4.6;5.6 Transmission of EM Waves through Chiral and Magnetic Media;173
5;Part II History and Concepts of Magnetic Interactions;179
5.1;6 Exchange, Spin–Orbit, and Zeeman Interactions;180
5.1.1;6.1 Overview;180
5.1.2;6.2 The Spin Dependent Atomic Hamiltonian or Pauli Equation;182
5.1.3;6.3 The Exchange Interaction;188
5.1.4;6.4 The Spin–Orbit Interaction;216
5.1.5;6.5 Hund’s Rules;222
5.1.6;6.6 The Zeeman Interaction;225
5.2;7 Electronic and Magnetic Interactions in Solids;234
5.2.1;7.1 Chapter Overview;234
5.2.2;7.2 Localized versus Itinerant Magnetism: The Role of the Centrifugal Potential;236
5.2.3;7.3 The Relative Size of Interactions in Solids;243
5.2.4;7.4 The Band Model of Ferromagnetism;247
5.2.5;7.5 Ligand Field Theory;258
5.2.6;7.6 The Importance of Electron Correlation and Excited States;274
5.2.7;7.7 Magnetism in Transition Metal Oxides;287
5.2.8;7.8 RKKY Exchange;303
5.2.9;7.9 Spin–Orbit Interaction: Origin of the Magnetocrystalline Anisotropy;307
6;Part III Polarized Electron and X-Ray Techniques;324
6.1;8 Polarized Electrons and Magnetism;325
6.1.1;8.1 Introduction;325
6.1.2;8.2 Generation of Spin-Polarized Electron Beams;326
6.1.3;8.3 Spin-Polarized Electrons and Magnetic Materials: Overview of Experiments;330
6.1.4;8.4 Formal Description of Spin-Polarized Electrons;331
6.1.5;8.5 Description of Spin Analyzers and Filters;339
6.1.6;8.6 Interactions of Polarized Electrons with Materials;341
6.1.7;8.7 Link Between Electron Polarization and Photon Polarization;354
6.2;9 Interactions of Polarized Photons with Matter;363
6.2.1;9.1 Overview;363
6.2.2;9.2 Terminology of Polarization Dependent Effects;364
6.2.3;9.3 SemiClassical Treatment of X-ray Scattering by Charges and Spins;367
6.2.4;9.4 SemiClassical Treatment of Resonant Interactions;373
6.2.5;9.5 Quantum-Theoretical Concepts;382
6.2.6;9.6 The Orientation-Averaged Intensity: Charge and Magnetic Moment Sum Rules;397
6.2.7;9.7 The Orientation-Dependent Intensity: Charge and Magnetic Moment Anisotropies;413
6.2.8;9.8 Magnetic Dichroism in X-ray Absorption and Scattering;436
6.3;10 X-rays and Magnetism: Spectroscopy and Microscopy;442
6.3.1;10.1 Introduction;442
6.3.2;10.2 Overview of Different Types of X-ray Dichroism;443
6.3.3;10.3 Experimental Concepts of X-ray Absorption Spectroscopy;448
6.3.4;10.4 Magnetic Imaging with X-rays;469
7;Part IV Properties of and Phenomena in the Ferromagnetic Metals;488
7.1;11 The Spontaneous Magnetization, Anisotropy, Domains;489
7.1.1;11.1 The Spontaneous Magnetization;490
7.1.2;11.2 The Magnetic Anisotropy;514
7.1.3;11.3 The Magnetic Microstructure: Magnetic Domains and Domain Walls;521
7.1.4;11.4 Magnetization Curves and Hysteresis Loops;525
7.1.5;11.5 Magnetism in Small Particles;527
7.2;12 Magnetism of Metals;531
7.2.1;12.1 Overview;531
7.2.2;12.2 Band Theoretical Results for the Transition Metals;533
7.2.3;12.3 The Rare Earth Metals: Band Theory versus Atomic Behavior;540
7.2.4;12.4 Spectroscopic Tests of the Band Model of Ferromagnetism;544
7.2.5;12.5 Resistivity of Transition Metals;558
7.2.6;12.6 Spin Conserving Electron Transitions in Metals;568
7.2.7;12.7 Transitions Between Opposite Spin States in Metals;583
7.2.8;12.8 Remaining Challenges;592
8;Part V Topics in Contemporary Magnetism;594
9;13 Surfaces and Interfaces of Ferromagnetic Metals;595
9.1;13.1 Overview;595
9.2;13.2 Spin-Polarized Electron Emission from Ferromagnetic Metals;596
9.3;13.3 Reflection of Electrons from a Ferromagnetic Surface;609
9.4;13.4 Static Magnetic Coupling at Interfaces;621
10;14 Electron and Spin Transport;644
10.1;14.1 Currents Across Interfaces Between a Ferromagnet and a Nonmagnet;644
10.2;14.2 Spin-Injection into a Ferromagnet;663
10.3;14.3 Spin Currents in Metals and Semiconductors;679
10.4;14.4 Spin-Based Transistors and Amplifiers;682
11;15 Ultrafast Magnetization Dynamics;686
11.1;15.1 Introduction;686
11.2;15.2 Energy and Angular Momentum Exchange between Physical Reservoirs;689
11.3;15.3 Spin Relaxation and the Pauli Susceptibility;694
11.4;15.4 Probing the Magnetization after Laser Excitation;697
11.5;15.5 Dynamics Following Excitation with Magnetic Field Pulses;712
11.6;15.6 Switching of the Magnetization;730
11.7;15.7 Dynamics of Antiferromagnetic Spins;766
12;Part VI Appendices;767
12.1;A Appendices;768
12.1.1;A.1 The International System of Units (SI);768
12.1.2;A.2 The Cross Product;770
12.1.3;A.3 s, p, and d Orbitals;771
12.1.4;A.4 Spherical Tensors;772
12.1.5;A.5 Sum Rules for Spherical Tensor Matrix Elements;773
12.1.6;A.6 Polarization Dependent Dipole Operators;774
12.1.7;A.7 Spin–Orbit Basis Functions for p and d Orbitals;775
12.1.8;A.8 Quadrupole Moment and the X-ray Absorption Intensity;776
12.1.9;A.9 Lorentzian Line Shape and Integral;779
12.1.10;A.10 Gaussian Line Shape and Its Fourier Transform;779
12.1.11;A.11 Gaussian Pulses, Half-Cycle Pulses and Transforms;780
13;References;782
14;Index;810




