Buch, Englisch, 300 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 487 g
Constructions and Analysis
Buch, Englisch, 300 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 487 g
ISBN: 978-1-4419-3022-4
Verlag: Springer
Created to teach students many of the most important techniques used for constructing combinatorial designs, this is an ideal textbook for advanced undergraduate and graduate courses in combinatorial design theory. The text features clear explanations of basic designs, such as Steiner and Kirkman triple systems, mutual orthogonal Latin squares, finite projective and affine planes, and Steiner quadruple systems. In these settings, the student will master various construction techniques, both classic and modern, and will be well-prepared to construct a vast array of combinatorial designs. Design theory offers a progressive approach to the subject, with carefully ordered results. It begins with simple constructions that gradually increase in complexity. Each design has a construction that contains new ideas or that reinforces and builds upon similar ideas previously introduced. A new text/reference covering all apsects of modern combinatorial design theory. Graduates and professionals incomputer science, applied mathematics, combinatorics, and applied statistics will find the book an essential resource.
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Mathematik | Informatik Mathematik Mathematik Allgemein Diskrete Mathematik, Kombinatorik
- Mathematik | Informatik EDV | Informatik Informatik Theoretische Informatik
Weitere Infos & Material
to Balanced Incomplete Block Designs.- Symmetric BIBDs.- Difference Sets and Automorphisms of Designs.- Hadamard Matrices and Designs.- Resolvable BIBDs.- Latin Squares.- Pairwise Balanced Designs I: Designs with Specified Block Sizes.- Pairwise Balanced Designs II: Minimal Designs.- t-Designs and t-wise Balanced Designs.- Orthogonal Arrays and Codes.- Selected Applications of Combinatorial Designs.