Stenzel | The Physics of Thin Film Optical Spectra | E-Book | sack.de
E-Book

E-Book, Englisch, Band 44, 359 Seiten, eBook

Reihe: Springer Series in Surface Sciences

Stenzel The Physics of Thin Film Optical Spectra

An Introduction
2. Auflage 2016
ISBN: 978-3-319-21602-7
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

An Introduction

E-Book, Englisch, Band 44, 359 Seiten, eBook

Reihe: Springer Series in Surface Sciences

ISBN: 978-3-319-21602-7
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



The book bridges the gap between fundamental physics courses (such as optics, electrodynamics, quantum mechanics and solid state physics) and highly specialized literature on the spectroscopy, design, and application of optical thin film coatings. Basic knowledge from the above-mentioned courses is therefore presumed. Starting from fundamental physics, the book enables the reader derive the theory of optical coatings and to apply it to practically important spectroscopic problems. Both classical and semiclassical approaches are included. Examples describe the full range of classical optical coatings in various spectral regions as well as highly specialized new topics such as rugate filters and resonant grating waveguide structures. The second edition has been updated and extended with respect to probing matter in different spectral regions, homogenous and inhomogeneous line broadening mechanisms and the Fresnel formula for the effect of planar interfaces.

Stenzel The Physics of Thin Film Optical Spectra jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1;Foreword;8
2;Preface to the Second Edition;10
3;Preface to the First Edition;13
4;Contents;15
5;Symbols and Abbreviations;20
6;1 Introduction;24
6.1;Abstract;24
6.2;1.1 General Remarks;24
6.3;1.2 To the Content of the Book;25
6.4;1.3 The General Problem;27
6.5;1.4 One Remark Concerning Conventions;29
7;Part I Classical Description of the Interactionof Light with Matter;31
8;2 The Linear Dielectric Susceptibility;32
8.1;Abstract;32
8.2;2.1 Maxwell's Equations;32
8.3;2.2 The Linear Dielectric Susceptibility;34
8.4;2.3 Linear Optical Constants;36
8.5;2.4 Some General Remarks;39
8.6;2.5 Example: Orientation Polarization and Debye's Equations;40
8.7;2.6 Energy Dissipation;44
9;3 The Classical Treatment of Free and Bound Charge Carriers;46
9.1;Abstract;46
9.2;3.1 Free Charge Carriers;46
9.2.1;3.1.1 Derivation of Drude's Formula I;46
9.2.2;3.1.2 Derivation of Drude's Formula II;49
9.3;3.2 The Oscillator Model for Bound Charge Carriers;52
9.3.1;3.2.1 General Idea;52
9.3.2;3.2.2 Microscopic Fields;54
9.3.3;3.2.3 The Clausius-Mossotti and Lorentz-Lorenz-Equations;56
9.4;3.3 Probing Matter in Different Spectral Regions;60
9.5;3.4 Spatial Dispersion;60
9.6;3.5 Attempt of an Illustrative Approach;63
10;4 Derivations from the Oscillator Model;67
10.1;Abstract;67
10.2;4.1 Natural Linewidth;67
10.3;4.2 Homogeneous and Inhomogeneous Line Broadening Mechanisms;69
10.3.1;4.2.1 General;69
10.3.2;4.2.2 Collision Broadening;70
10.3.3;4.2.3 Doppler Broadening;70
10.3.4;4.2.4 Brendel Model;71
10.4;4.3 Oscillators with More Than One Degree of Freedom;72
10.5;4.4 Sellmeier's and Cauchy's Formulae;74
10.6;4.5 Optical Properties of Mixtures;77
10.6.1;4.5.1 Motivation and Example;77
10.6.2;4.5.2 The Maxwell Garnett, Bruggeman and Lorentz-Lorenz Mixing Models;81
10.6.3;4.5.3 Metal-Dielectric Mixtures and Remarks on Surface Plasmons;84
10.6.4;4.5.4 Dielectric Mixtures and Wiener Bounds;87
10.6.5;4.5.5 The Effect of Pores;92
10.6.6;4.5.6 The Refractive Index of Amorphous Silicon in Terms of the Lorentz-Lorenz Approach: A Model Calculation;98
11;5 The Kramers-Kronig Relations;104
11.1;Abstract;104
11.2;5.1 Derivation of the Kramers-Kronig Relations;104
11.3;5.2 Some Conclusions;108
11.4;5.3 Resume from Chaps. 2--4 and this Chapter;110
11.4.1;5.3.1 Overview on Main Results;110
11.4.2;5.3.2 Problems;111
12;Part II Interface Reflection and InterferencePhenomena in Thin Film Systems;113
13;6 Planar Interfaces;114
13.1;Abstract;114
13.2;6.1 Transmission, Reflection, Absorption and Scattering;114
13.2.1;6.1.1 Definitions;114
13.2.2;6.1.2 Experimental Aspects;116
13.2.3;6.1.3 Remarks on the Absorbance Concept;119
13.3;6.2 The Effect of Planar Interfaces: Fresnel's Formulae;120
13.4;6.3 Total Reflection of Light;129
13.4.1;6.3.1 Conditions of Total Reflection;129
13.4.2;6.3.2 Discussion;130
13.4.3;6.3.3 Attenuated Total Reflection ATR;131
13.5;6.4 Metal Surfaces;133
13.5.1;6.4.1 Metallic Reflection;133
13.5.2;6.4.2 Propagating Surface Plasmon Polaritons;136
13.6;6.5 Anisotropic Materials;142
13.6.1;6.5.1 Interface Reflection Between an Isotropic and an Anisotropic Material;142
13.6.2;6.5.2 Giant Birefringent Optics;145
14;7 Thick Slabs and Thin Films;147
14.1;Abstract;147
14.2;7.1 Transmittance and Reflectance of a Thick Slab;147
14.3;7.2 Thick Slabs and Thin Films;152
14.4;7.3 Spectra of Thin Films;155
14.5;7.4 Special Cases;158
14.5.1;7.4.1 Vanishing Damping;158
14.5.2;7.4.2 Halfwave Layers;160
14.5.3;7.4.3 Quarterwave Layers;161
14.5.4;7.4.4 Free-Standing Films;163
14.5.5;7.4.5 A Single Thin Film on a Thick Substrate;165
14.5.6;7.4.6 A Few More Words on Reverse Search Procedures;169
15;8 Gradient Index Films and Multilayers;178
15.1;Abstract;178
15.2;8.1 Gradient Index Films;178
15.2.1;8.1.1 General Assumptions;178
15.2.2;8.1.2 s-Polarization;181
15.2.3;8.1.3 p-Polarization;183
15.2.4;8.1.4 Calculation of Transmittance and Reflectance;184
15.3;8.2 Multilayer Systems;190
15.3.1;8.2.1 The Characteristic Matrix;190
15.3.2;8.2.2 Characteristic Matrix of a Single Homogeneous Film;192
15.3.3;8.2.3 Characteristic Matrix of a Film Stack;192
15.3.4;8.2.4 Calculation of Transmittance and Reflectance;193
16;9 Special Geometries;196
16.1;Abstract;196
16.2;9.1 Quarterwave Stacks and Derived Systems;196
16.3;9.2 Chirped and Dispersive Mirrors;200
16.3.1;9.2.1 Basic Properties of Short Light Pulses: Qualitative Discussion;200
16.3.2;9.2.2 General Idea of Chirped Mirror Design;204
16.3.3;9.2.3 First and Second Order Dispersion Theory;205
16.3.4;9.2.4 Spectral Targets for Dispersive Mirrors and Examples;210
16.4;9.3 Structured Surfaces;215
16.5;9.4 Remarks on Resonant Grating Waveguide Structures;217
16.5.1;9.4.1 General Idea;217
16.5.2;9.4.2 Propagating Modes and Grating Period;218
16.5.3;9.4.3 Energy Exchange Between the Propagating Modes;220
16.5.4;9.4.4 Analytical Film Thickness Estimation for a GWS;221
16.5.5;9.4.5 Examples on GWS-Based Simple Reflector and Absorber Designs;223
16.6;9.5 Resume from Chaps. 6--8 and this Chapter;228
16.6.1;9.5.1 Overview on Main Results;228
16.6.2;9.5.2 Further Experimental Examples;230
16.6.3;9.5.3 Problems;235
17;Part III Semiclassical Description of the Interactionof Light with Matter;241
18;10 Einstein Coefficients;242
18.1;Abstract;242
18.2;10.1 General Remarks;242
18.3;10.2 Phenomenological Description;243
18.4;10.3 Mathematical Treatment;245
18.5;10.4 Perturbation Theory of Quantum Transitions;246
18.6;10.5 Planck's Formula;252
18.6.1;10.5.1 Idea;252
18.6.2;10.5.2 Planck Distribution;253
18.6.3;10.5.3 Density of States;253
18.7;10.6 Expressions for Einstein Coefficients in the Dipole Approximation;256
18.8;10.7 Lasers;260
18.8.1;10.7.1 Population Inversion and Light Amplification;260
18.8.2;10.7.2 Feedback;261
19;11 Semiclassical Treatment of the Dielectric Function;268
19.1;Abstract;268
19.2;11.1 First Suggestions;268
19.3;11.2 Calculation of the Dielectric Function by Means of the Density Matrix;270
19.3.1;11.2.1 The Interaction Picture;270
19.3.2;11.2.2 Introduction of the Density Matrix;271
19.3.2.1;11.2.2.1 Semiclassical Calculation of the Polarizability;277
20;12 Solid State Optics;283
20.1;Abstract;283
20.2;12.1 Formal Treatment of the Dielectric Function of Crystals (Direct Transitions);283
20.3;12.2 Joint Density of States;288
20.4;12.3 Indirect Transitions;293
20.5;12.4 Amorphous Solids;296
20.5.1;12.4.1 General Considerations;296
20.5.1.1;12.4.1.1 Tauc-Gap and Urbach-Tail;299
20.6;12.5 Resume from Chaps. 10--11 and this Chapter;304
20.6.1;12.5.1 Overview on Main Results;304
20.6.2;12.5.2 Problems;307
21;Part IV Basics of Nonlinear Optics;313
22;13 Some Basic Effects of Nonlinear Optics;314
22.1;Abstract;314
22.2;13.1 Nonlinear Susceptibilities: Phenomenological Approach;314
22.2.1;13.1.1 General Idea;314
22.2.2;13.1.2 Formal Treatment and Simple Second Order Nonlinear Optical Effects;316
22.2.3;13.1.3 Some Third Order Effects;323
22.3;13.2 Calculation Scheme for Nonlinear Optical Susceptibilities;326
22.3.1;13.2.1 Macroscopic Susceptibilities and Microscopic Hyperpolarizabilities;326
22.3.2;13.2.2 Density Matrix Approach for Calculating Optical Hyperpolarizabilities;327
22.3.3;13.2.3 Discussion;332
22.3.3.1;13.2.3.1 Convergence;332
22.3.3.2;13.2.3.2 Selection Rules;333
22.3.3.3;13.2.3.3 Resonance Behaviour;334
22.3.3.4;13.2.3.4 Nonlinear Absorption Coefficient;335
22.4;13.3 Resume for this Chapter;336
22.4.1;13.3.1 Overview on Main Results;336
22.4.2;13.3.2 Problems;338
23;14 Concluding Remarks;339
23.1;Abstract;339
24;Too Many Equations?—A Very Final Remarkon Physicists and Mathematics;344
25;Bibliography;345
26;Index;354

Introduction.- Part I Classical Description of the Interaction of Light with Matter.- Part II Interface Reflection and Interference Phenomena in Thin Film Systems.- Part III Semiclassical Description of the Interaction of Light with Matter.- Part V Basics of Nonlinear Optics.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.