Steinberg | Machine Learning-based Prediction of Missing Parts for Assembly | Buch | 978-3-658-45032-8 | sack.de

Buch, Englisch, 155 Seiten, Format (B × H): 148 mm x 210 mm, Gewicht: 241 g

Reihe: Research

Steinberg

Machine Learning-based Prediction of Missing Parts for Assembly


2024
ISBN: 978-3-658-45032-8
Verlag: Springer

Buch, Englisch, 155 Seiten, Format (B × H): 148 mm x 210 mm, Gewicht: 241 g

Reihe: Research

ISBN: 978-3-658-45032-8
Verlag: Springer


Manufacturing companies face challenges in managing increasing process complexity while meeting demands for on-time delivery, particularly evident during critical processes like assembly. The early identification of potential missing parts at the beginning assembly emerges as a crucial strategy to uphold delivery commitments. This book embarks on developing machine learning-based prediction models to tackle this challenge. Through a systemic literature review, deficiencies in current predictive methodologies are highlighted, notably the underutilization of material data and a late prediction capability within the procurement process. Through case studies within the machine industry a significant influence of material data on the quality of models predicting missing parts from in-house production was verified. Further, a model for predicting delivery delays in the purchasing process was implemented, which makes it possible to predict potential missing parts from suppliers at the time of ordering. These advancements serve as indispensable tools for production planners and procurement professionals, empowering them to proactively address material availability challenges for assembly operations.

Steinberg Machine Learning-based Prediction of Missing Parts for Assembly jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Introduction.- Theoretical Background for the Prediction of Missing Parts for Assembly.- Publication I: Approaches for the Prediction of Lead Times in an Engineer to Order Environment - a Systematic Review.- Publication II: Impact of Material Data in Assembly Delay Prediction - a Machine Learning-based Case Study in Machinery Industry.- Publication III: Machine Learning-based Prediction of Missing Components for Assembly - a Case Study at an Engineer-to-order Manufacturer.- Publication IV: Predicting Supplier Delays Utilizing Machine Learning - a Case Study in German Manufacturing Industry.- Critical Refection and Future Perspective.- Summary.- References.


Fabian Steinberg studied production technology at the Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen with a Master's degree. In his subsequent doctorate at the Chair of International Production Engineering and Management (IPEM) at the University of Siegen, he focussed on the prediction of missing parts for assembly using artificial intelligence.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.