Steger / Prömel | The Steiner Tree Problem | Buch | 978-3-528-06762-5 | sack.de

Buch, Englisch, 241 Seiten, Format (B × H): 170 mm x 240 mm, Gewicht: 435 g

Reihe: Advanced Lectures in Mathematics

Steger / Prömel

The Steiner Tree Problem

A Tour through Graphs, Algorithms, and Complexity
Softcover Nachdruck of the original 1. Auflage 2002
ISBN: 978-3-528-06762-5
Verlag: Vieweg+Teubner Verlag

A Tour through Graphs, Algorithms, and Complexity

Buch, Englisch, 241 Seiten, Format (B × H): 170 mm x 240 mm, Gewicht: 435 g

Reihe: Advanced Lectures in Mathematics

ISBN: 978-3-528-06762-5
Verlag: Vieweg+Teubner Verlag


"A very simple but instructive problem was treated by Jacob Steiner, the famous representative of geometry at the University of Berlin in the early nineteenth century. Three villages A,B ,C are to be joined by a system of roads of minimum length. " Due to this remark of Courant and Robbins (1941), a problem received its name that actually reaches two hundred years further back and should more appropriately be attributed to the French mathematician Pierre Fermat. At the end of his famous treatise "Minima and Maxima" he raised the question to find for three given points in the plane a fourth one in such a way that the sum of its distances to the given points is minimized - that is, to solve the problem mentioned above in its mathematical abstraction. It is known that Evangelista Torricelli had found a geometrical solution for this problem already before 1640. During the last centuries this problem was rediscovered and generalized by many mathematicians, including Jacob Steiner. Nowadays the term "Steiner prob­ lem" refers to a problem where a set of given points PI,. ,Pn have to be connected in such a way that (i) any two of the given points are joined and (ii) the total length (measured with respect to some predefined cost function) is minimized.

Steger / Prömel The Steiner Tree Problem jetzt bestellen!

Zielgruppe


Upper undergraduate

Weitere Infos & Material


1 Basics I: Graphs.- 1.1 Introduction to graph theory.- 1.2 Excursion: Random graphs.- 2 Basics II: Algorithms.- 2.1 Introduction to algorithms.- 2.2 Excursion: Fibonacci heaps and amortized time.- 3 Basics III: Complexity.- 3.1 Introduction to complexity theory.- 3.2 Excursion: More NP-complete problems.- 4 Special Terminal Sets.- 4.1 The shortest path problem.- 4.2 The minimum spanning tree problem.- 4.3 Excursion: Matroids and the greedy algorithm.- 5 Exact Algorithms.- 5.1 The enumeration algorithm.- 5.2 The Dreyfus-Wagner algorithm.- 5.3 Excursion: Dynamic programming.- 6 Approximation Algorithms.- 6.1 A simple algorithm with performance ratio 2.- 6.2 Improving the time complexity.- 6.3 Excursion: Machine scheduling.- 7 More on Approximation Algorithms.- 7.1 Minimum spanning trees in hypergraphs.- 7.2 Improving the performance ratio I.- 7.3 Excursion: The complexity of optimization problems.- 8 Randomness Helps.- 8.1 Probabilistic complexity classes.- 8.2 Improving the performance ratio II.- 8.3 An almost always optimal algorithm.- 8.4 Excursion: Primality and cryptography.- 9 Limits of Approximability.- 9.1 Reducing optimization problems.- 9.2 APX-completeness.- 9.3 Excursion: Probabilistically checkable proofs.- 10 Geometric Steiner Problems.- 10.1 A characterization of rectilinear Steiner minimum trees.- 10.2 The Steiner ratios.- 10.3 An almost linear time approximation scheme.- 10.4 Excursion: The Euclidean Steiner problem.- Symbol Index.


Prof. Dr. Jürgen Prömel ist am Institut für Informatik der Humboldt Universität zu Berlin tätig, Prof. Dr. Angelika Steger lehrt am Institut für Informatik der TU München.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.