Stefanoiu / Borne / Popescu | Optimization in Engineering Sciences | E-Book | sack.de
E-Book

E-Book, Englisch, 448 Seiten, E-Book

Stefanoiu / Borne / Popescu Optimization in Engineering Sciences

Metaheuristic, Stochastic Methods and Decision Support
1. Auflage 2014
ISBN: 978-1-118-64877-3
Verlag: John Wiley & Sons
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

Metaheuristic, Stochastic Methods and Decision Support

E-Book, Englisch, 448 Seiten, E-Book

ISBN: 978-1-118-64877-3
Verlag: John Wiley & Sons
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



The purpose of this book is to present the main metaheuristicsand approximate and stochastic methods for optimization of complexsystems in Engineering Sciences. It has been written within theframework of the European Union project ERRIC (Empowering RomanianResearch on Intelligent Information Technologies), which is fundedby the EU's FP7 Research Potential program and has beendeveloped in co-operation between French and Romanian teachingresearchers. Through the principles of various proposed algorithms(with additional references) this book allows the reader to explorevarious methods of implementation such as metaheuristics, localsearch and populationbased methods. It examines multi-objective andstochastic optimization, as well as methods and tools forcomputer-aided decision-making and simulation fordecision-making.

Stefanoiu / Borne / Popescu Optimization in Engineering Sciences jetzt bestellen!

Weitere Infos & Material


1. METAHEURISTICS, LOCAL SEARCH
1.1. Hill Climbing
1.2. Tabu Search
1.3. Simulated Annealing
1.4. Tunneling
1.5. Algorithms with Penalties
1.6 GRASP METHOD
2. METAHEURISTICS, POPULATION- BASED METHODS
2.1. Evolutionary Algorithms
2.2. Genetics Algorithms
2.2.1. Biologic Breviary
2.2.2. Genetic Algorithms Principle
2.2.3. Scheme Theorem of J. Holland
2.2.4. Vose-Liepins Algorithm with Infinite Population
2.2.5. Nix-Vose Algorithm with finite Population
2.2.6. How to implement a Genetic Algorithms
2.3. Ant Colony Optimization Algorithms
2.4. Particle Swarm Optimization
2.4.1 General Algorithm
2.4.2. Firefly Algorithm
2.4.3 Bat Algorithm
2.4.4 Bees Algorithm
2.4.5 Improved Particle Swarm Optimization Algorithm
3. MULTI-OBJECTIVE OPTIMIZATION
3.1 Pareto-optimality
3.2 Choquet Integral
3.3 Optimization with two Objective Functions
3.3.1 Identification and Optimization, Two Control Objectives
3.3.2 Aggregation of Identification and Optimization Stages
3.3.3 Problem Construction and Solution : parametric representation, variables recursive partitioning, approach on the objective functions sensitivity
4. STOCHASTIC OPTIMIZATION
4.1Problem Position
4.2 Repartition Function Calculation
4.3 Optimality Stochastic Criteria
4.3.1 Calculation of the Solution to the Stochastic Problem - Admissible Solutions Case, Minimum Risk Problem, Imposed Risk Problem
4.3.2 Calculation of Solution to the Stochastic Problem- Partially Admissible Solutions
4.3.3Case Studies
5. METHODS AND TOOLS FOR COMPUTER AIDED DECISION6MAKING
5.1. Optimal vs suboptimal solutions
5.2 Methods
5.2.1 Influence diagrams and decision trees
5.2.2 Game theory based methods
5.2.3 Multiattribute decision models
5.2.4 Other methods (Borda , Condorcet , Onicescu)
5.2.5 Combinations of numerical models and AI--based techniques
5.3. Decision Support Systems
5.4. Criteria or decision-makers ?
6. DECISION MAKING USING SIMULATION
6.1 Problem statement in environment with uncertainties
6.2. Limits of formal approaches
6.3 Benefits of simulation for decision making
6.4 Development approach
6.5 Study cases:
6.5.1 New product release
6.5.2 Stock management
6.5.3 Plane overbooking
6.5.4 Car rental
6.5.5 ATM
6.5.6 Bank placements
7. APPLICATIONS
7.1. Fuzzy reasoning and genetic optimization in manufacturing
7.2. Genetic matching pursuit for mechanical faults
7.3. Phenomena prediction by using particle swarm optimization
7.4 Optimization of a petrochemical platform
7.4.1 Technological insights and existing automation
7.4.2 Optimizing the ethylene reactor
7.5 Optimization of a thermo-energetic installation
7.5.1 Technological insights and existing automation
7.5.2 Optimizing the heating system
7.6 Optimization of combustion process in a steel making plant
7.6.1 Technological insights and existing automation
7.6.2 Optimizing the combustion process
8. CONCLUSION



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.