Stange / Deutler / Wilrich | Bayes-Verfahren | Buch | 978-3-540-07815-9 | sack.de

Buch, Deutsch, 312 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 562 g

Reihe: Hochschultext

Stange / Deutler / Wilrich

Bayes-Verfahren

Schätz- und Testverfahren bei Berücksichtigung von Vorinformationen
Erscheinungsjahr 1977
ISBN: 978-3-540-07815-9
Verlag: Springer Berlin Heidelberg

Schätz- und Testverfahren bei Berücksichtigung von Vorinformationen

Buch, Deutsch, 312 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 562 g

Reihe: Hochschultext

ISBN: 978-3-540-07815-9
Verlag: Springer Berlin Heidelberg


Springer Book Archives

Stange / Deutler / Wilrich Bayes-Verfahren jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


I: Die Schätzung von Parametern mit Berücksichtigung von Vorinformationen (Bayes-Schätzungen).- 1. Aufgabenstellung.- 2. Die priori- und die posteriori-Verteilung; das Theorem von Bayes; Likelihood; Beispiele.- 3. Probenahme aus einer endlichen Gesamtheit bei konstanter priori-Wahrscheinlichkeit für die Zahl der Merkmalträger in der Gesamtheit.- 4. Näherungsformeln zur Berechnung der posteriori-Verteilung und des posteriori-Vertrauensbereichs für die Problemstellung von Abschnitt 3.- 5. Die priori- und die posteriori-Verteilung eines Parameters ?. Bayes-Schätzwert und posteriori-Vertrauensbereich für ?.- 6. Die Schätzung des Mittelwerts ? einer Normalverteilung mit bekannter Varianz ?2; Normalverteilung von ? als priori-Verteilung.- 7. Die Schätzung des Mittelwerts ? einer Normalverteilung mit bekannter Varianz ?2; Gleichverteilung von ? als priori-Verteilung.- 8. Die Schätzung der Varianz ?2 einer Normalverteilung mit bekanntem Mittelwert ? bei „geeigneten Vorinformationen“ über ?2.- 9. Die Schätzung von Mittelwert ? und Varianz ?2 einer Normalverteilung (von der beide Parameter unbekannt sind) bei „geringen Vorinformationen“ über ? und ?2.- 10. Die Schätzung von Mittelwert ? und Varianz ?2 einer Normalverteilung (von der beide Parameter unbekannt sind) bei „geeigneten Vorinformationen“ über ? und ?2.- 11. Die Schätzung der Mittelwerte ?1 und ?2 zweier Normalverteilungen mit bekannten Varianzen ?12 und ?22; Normalverteilungen für ?1 und ?2 als priori-Verteilungen.- 12. Die Schätzung der Mittelwerte und Varianzen zweier Normalverteilungen bei „geringen Vorinformationen“ über die Parameter.- 13. Die Schätzung der Mittelwerte und Varianzen zweier Normalverteilungen bei „geeigneten Vorinformationen“ überdie Parameter.- 14. Die Schätzung der Grundwahrscheinlichkeit p einer Binomialverteilung; Gleichverteilung von p als priori-Verteilung.- 15. Die Schätzung der Grundwahrscheinlichkeit p einer Binomialverteilung; Beta-Verteilung von p als priori-Verteilung.- 16. Die Schätzung des Mittelwerts ? einer Poisson-Verteilung bei „geringen Vorinformationen“ über ?.- 17. Die Schätzung des Mittelwerts ? einer Poisson-Verteilung; Gamma-Verteilung von ? als priori-Verteilung.- 18. Eine allgemeine Methode zur Ermittlung der priori-Parameter aus einer Versuchsreihe.- 19. Die Ermittlung der priori-Parameter spezieller Verteilungen aus einer Versuchsreihe.- II: Prüfpläne für messende Prüfung mit Berücksichtigung von Vorinformationen (Bayes-Prüfpläne).- 20. Aufgabenstellung.- 21. Pläne für messende Prüfung bei Berücksichtigung von Vorinformationen über die Verteilung der Mittelwerte.- 22. Pläne für messende Prüfung bei Berücksichtigung von Vorinformationen und Kosten.- 23. Folgepläne für messende Prüfung bei Berücksichtigung von Vorinformationen über die Verteilung der Mittelwerte.- 24. Folgepläne für messende Prüfung bei Berücksichtigung von Vorinformationen und Kosten.- Tabelle.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.