E-Book, Englisch, 237 Seiten
Reihe: Chapman & Hall/CRC Data Mining and Knowledge Discovery Series
Srivastava / Nemani / Steinhaeuser Large-Scale Machine Learning in the Earth Sciences
1. Auflage 2017
ISBN: 978-1-4987-0388-8
Verlag: CRC Press
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
E-Book, Englisch, 237 Seiten
Reihe: Chapman & Hall/CRC Data Mining and Knowledge Discovery Series
ISBN: 978-1-4987-0388-8
Verlag: CRC Press
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Large-scale machine learning, currently focused on the internet and/or social network analysis, could prove highly beneficial in the study of earth science, a broad multidisciplinary field of study that generates huge amounts of data. This comprehensive book is the first to tackle the subject of large-scale machine learning and its applications to the earth sciences. It covers significant issues in earth science and large-scale machine learning techniques with each contributing author recognized as a well-known authority in the field.
Zielgruppe
This book is intended for researchers in data mining, machine learning and earth science.
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Network science perspectives on engineering adaptation to climate change and weather extremes
Udit Bhatia, Auroop R. Ganguly
Structured Estimation in High Dimensions: Applications in Climate
Andre R Goncalves, Arindam Banerjee
Spatiotemporal Global Climate Model Tracking
Scott McQuade, Claire Monteleoni
Statistical Downscaling in Climate with State of the Art Scalable Machine Learning
Thomas Vandal, Udit Bhatia, Auroop R. Ganguly
Large-Scale Machine Learning for Species Distributions
Reid Johnson, Nitesh Chawla
Using Large-scale Machine Learning to Improve our Understanding of the Formation of Tornadoes
Amy McGovern, Corey Potvin, Rodger Brown
Deep Learning for Very High Resolution Imagery Classification
Sangram Ganguly, Saikat Basu, Ramakrishna Nemani, Supratik Mukhopadhyay, Andrew Michaelis, Petr Votava, Cristina Milesi, Uttam Kumar
Unmixing Algorithms: A Review of Techniques for Spectral Detection and Classification of Land Cover from Mixed Pixels on NASA Earth Exchange
Uttam Kumar, Cristina Milesi, S. Kumar Raja, Ramakrishna Nemani, Sangram Ganguly, Weile Wang, Petr Votava, Andrew Michaelis, and Saikat Basu
Semantic Interoperability of Long-Tail Geoscience Resources over the Web
Mostafa M.Elag, Praveen Kumar, Luigi Marini, Scott D. Peckham, Rui Liu