E-Book, Englisch, 1426 Seiten, Web PDF
Squire / Bloom / Berg Fundamental Neuroscience
2. Auflage 2002
ISBN: 978-0-08-052180-0
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 1426 Seiten, Web PDF
ISBN: 978-0-08-052180-0
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
With over 300 training programs in neuroscience currently in existence, demand is great for a comprehensive textbook that both introduces graduate students to the full range of neuroscience, from molecular biology to clinical science, but also assists instructors in offering an in-depth course in neuroscience to advanced undergraduates.The second edition of Fundamental Neuroscience accomplishes all this and more. The thoroughly revised text features over 25% new material including completely new chapters, illustrations, and a CD-ROM containing all the figures from the text. More concise and manageable than the previous edition, this book has been retooled to better serve its audience in the neuroscience and medical communities.Key Features* Logically organized into 7 sections, with uniform editing of the content for a 'one-voice' feel throughout all 54 chapters* Includes numerous text boxes with concise, detailed descriptions of specific experiments, disorders, methodological approaches, and concepts* Well-illustrated with over 850 full color figures, also included on the accompanying CD-ROM
Autoren/Hrsg.
Weitere Infos & Material
1;Cover;1
2;Full Contents;8
3;Preface to the First Edition;16
4;Preface to the Second Edition;18
5;Acknowledgments;20
6;Section I: Neuroscience;22
6.1;Chapter 1. Fundamentals of Neuroscience FLOYD E. BLOOM;24
6.1.1;A Brief History of Neuroscience;24
6.1.2;The Terminology of Nervous Systems Is Hierarchical, Distributed, Descriptive, and Historically Based;24
6.1.3;Neurons and Glia Are Cellular Building Blocks of the Nervous System ;25
6.1.4;The Operative Processes of Nervous Systems Are Also Hierarchical ;26
6.1.5;Cellular Organization of the Brain;27
6.1.6;Organization of This Text;28
6.1.7;This Book Is Intended for a Broad Range of Scholars of the Neurosciences ;29
6.1.8;Clinical Issues in the Neurosciences;29
6.1.9;The Spirit of Exploration Continues;29
6.1.10;The Genomic Inventory Is a Giant Step Forward;30
6.1.11;Neuroscience Today: A Communal Endeavor;30
6.1.12;The Creation of Knowledge;31
6.1.13;Responsible Conduct;32
6.1.14;Summary;34
6.1.15;References;34
6.2;Chapter 2. The Architecture of Nervous Systems LARRY W. SWANSON;36
6.2.1;General Principles from an Evolutionary Perspective ;36
6.2.2;Development of the Vertebrate Nervous System;44
6.2.3;Identity and Organization of Functional Systems;50
6.2.4;Some Basic Structural Features of the Nervous System 32;53
6.2.5;Summary;53
6.2.6;References;65
7;Section II: Cellular and Molecular Neuroscience;68
7.1;Chapter 3. Cellular Components of Nervous Tissue;70
7.1.1;The Neuron;70
7.1.2;Neuroglia;82
7.1.3;Cerebral Vasculature;90
7.1.4;Summary;96
7.1.5;References;96
7.2;Chapter 4. Subcellular Organization of the Nervous System: Organelles and Their Functions;100
7.2.1;Axons and Dendrites: Unique Structural Components of Neurons ;100
7.2.2;Protein Synthesis in Nervous Tissue;105
7.2.3;Cytoskeletons of Neurons and Glial Cells;116
7.2.4;Molecular Motors in the Nervous System;124
7.2.5;Building and Maintaining Nervous System Cells ;127
7.2.6;References;134
7.3;Chapter 5. Electrotonic Properties of Axons and Dendrites;136
7.3.1;Toward a Theory of Neuronal Information Processing ;136
7.3.2;Basic Tools: Cable Theory and Compartmental Models ;137
7.3.3;Spread of Steady-State Signals;138
7.3.4;Spread of Transient Signals;143
7.3.5;Electrotonic Properties Underlying Propagation in Axons ;145
7.3.6;Electrotonic Spread in Dendrites;147
7.3.7;Dynamic Properties of Passive Electrotonic Structure ;150
7.3.8;Relating Passive to Active Potentials;155
7.3.9;References;157
7.4;Chapter 6. Membrane Potential and Action Potential;160
7.4.1;Membrane Potential;161
7.4.2;Action Potential;166
7.4.3;References;181
7.5;Chapter 7. Neurotransmitters;184
7.5.1;Several Modes of Neuronal Communication Exist;184
7.5.2;Chemical Transmission;185
7.5.3;Classical Neurotransmitters;187
7.5.4;Nonclassical Neurotransmitters;207
7.5.5;Peptide Transmitters;209
7.5.6;Unconventional Transmitters;212
7.5.7;Synaptic Transmission in Perspective;216
7.5.8;References;217
7.6;Chapter 8. Release of Neurotransmitters;218
7.6.1;Transmitter Release Is Quantal;218
7.6.2;Excitation–Secretion Coupling;223
7.6.3;Molecular Mechanisms of the Nerve Terminal;225
7.6.4;Quantal Analysis: Probing Synaptic Physiology;237
7.6.5;Short-Term Synaptic Plasticity;241
7.6.6;References;245
7.7;Chapter 9. Neurotransmitter Receptors;246
7.7.1;Ionotropic Receptors;246
7.7.2;G-Protein Coupled Receptors;266
7.7.3;References;278
7.8;Chapter 10. Intracellular Signaling;280
7.8.1;Signaling through G-Protein-Linked Receptors;280
7.8.2;Modulation of Neuronal Function by Protein Kinases and Phosphatases ;295
7.8.3;Intracellular Signaling Affects Nuclear Gene Expression ;309
7.8.4;References;318
7.9;Chapter 11. Postsynaptic Potentials and Synaptic Integration;320
7.9.1;Ionotropic Receptors: Mediators of Fast Excitatory and Inhibitory Synaptic Potentials ;320
7.9.2;Metabotropic Receptors: Mediators of Slow Synaptic Potentials ;332
7.9.3;Integration of Synaptic Potentials;335
7.9.4;References;338
7.10;Chapter 12. Information Processing in Complex Dendrites;340
7.10.1;Strategies for Studying Complex Dendrites;340
7.10.2;An Axon Places Constraints on Dendritic Processing ;341
7.10.3;Dendrodendritic Interactions between Axonal Cells;342
7.10.4;Passive Dendritic Trees Can Perform Complex Computations ;343
7.10.5;Distal Dendrites Can Be Closely Linked to Axonal Output ;344
7.10.6;Depolarizing and Hyperpolarizing Dendritic Conductances Interact Dynamically ;345
7.10.7;The Axon Hillock-Initial Segment Encodes Global Output ;346
7.10.8;Retrograde Impulse Spread into Dendrites Can Have Several Functions ;347
7.10.9;Examples of How Voltage-Gated Channels Take Part in Dendritic Integration ;350
7.10.10;Multiple Impulse Initiation Sites Are under Dynamic Control ;355
7.10.11;Dendritic Spines Are Multifunctional Microintegrative Units ;355
7.10.12;Summary: The Dendritic Tree as a Complex Information Processing System ;357
7.10.13;References;357
7.11;Chapter 13. Brain Energy Metabolism;360
7.11.1;Energy Metabolism of the Brain as a Whole Organ;360
7.11.2;Coupling of Neuronal Activity, Blood Flow, and Energy Metabolism ;363
7.11.3;Energy-Producing and Energy-Consuming Processes in the Brain ;366
7.11.4;Brain Energy Metabolism at the Cellular Level ;370
7.11.5;Glutamate and Nitrogen Metabolism: A Coordinated Shuttle between Astrocytes and Neurons ;377
7.11.6;The Astrocyte–Neuron Metabolic Unit;380
7.11.7;References;96
8;Section III: Nervous System Development;382
8.1;Chapter 14. Neural Induction and Pattern Formation;384
8.1.1;Neural Induction;384
8.1.2;Early Neural Patterning;392
8.1.3;Regionalization of the Central Nervous System;396
8.1.4;Regionalization of the Prechordal Central Nervous System ;406
8.1.5;Conclusions;409
8.1.6;References;410
8.2;Chapter 15. Neurogenesis and Migration;412
8.2.1;Development of the Peripheral Nervous System;412
8.2.2;Development of the Central Nervous System;424
8.2.3;References;436
8.3;Chapter 16. Cellular Determination;438
8.3.1;Neuronal Phenotypes and Determinants;438
8.3.2;Determination of Neural Progenitors;440
8.3.3;Speci.cation of Neural Lineages by Intrinsic Mechanisms ;447
8.3.4;Speci.cation of Neural Fates by Extrinsic Mechanisms ;453
8.3.5;Summary;468
8.3.6;References;468
8.4;Chapter 17. Growth Cones and Axon Pathfinding;470
8.4.1;Growth Cones Are Actively Guided;470
8.4.2;Guidance Cues for Developing Axons;472
8.4.3;Guidance Cues and the Control of Actin Polymerization ;477
8.4.4;Guidance in Vivo: Reusing Cues for Different Purposes and Changing Responses to Cues ;480
8.4.5;Future Directions;487
8.4.6;References;487
8.5;Chapter 18. Target Selection, Topographic Maps, and Synapse Formation;490
8.5.1;Target Selection and Map Formation;490
8.5.2;Development of the Neuromuscular Synapse;504
8.5.3;Synapse Formation in the Central Nervous System;513
8.5.4;References;518
8.6;Chapter 19. Programmed Cell Death and Neurotrophic Factors;520
8.6.1;Cell Death and the Neurotrophic Hypothesis;522
8.6.2;Nerve Growth Factor: The Prototype Target-Derived Neuronal Survival Factor ;523
8.6.3;The Neurotrophin Family;526
8.6.4;Neurotrophin Receptors;528
8.6.5;Cytokines and Growth Factors in the Nervous System ;531
8.6.6;Neurotrophic Factors Have Multiple Activities;532
8.6.7;TRK Receptors Are Similar to Other Growth Factor Receptors ;535
8.6.8;Programmed Cell Death of Neurons Is Widespread in Invertebrate and Vertebrate Species ;538
8.6.9;Modes of Cell Death in Developing Neurons;539
8.6.10;The Mode of Neuronal Cell Death Re.ects the Activation of Distinct Biochemical and Molecular Mechanisms ;543
8.6.11;Programmed Cell Death Is Regulated by Interactions with Targets, Afferents, and Nonneuronal Cells ;546
8.6.12;Functions of Neuronal Programmed Cell Death;550
8.6.13;Programmed Cell Death, Developmental Disorders, and Neurodegenerations ;551
8.6.14;References;553
8.7;Chapter 20. Synapse Elimination;554
8.7.1;An Overview of Synapse Elimination;554
8.7.2;The Purpose of Synapse Elimination;556
8.7.3;A Role for Interaxonal Competition;558
8.7.4;Spatial Patterning of Connectivity by Synapse Elimination ;562
8.7.5;Activity Is Required for Synapse Elimination;566
8.7.6;How Widespread Is Activity-Driven Synapse Elimination? ;570
8.7.7;How Are Synaptic Connections Altered?;573
8.7.8;Is Synapse Elimination Strictly a Developmental Phenomenon? ;574
8.7.9;References;574
8.8;Chapter 21. Early Experience and Critical Periods;576
8.8.1;Sound Localization: Calibrated by Early Experience in the Owl ;577
8.8.2;Birdsong: Learned by Experience;580
8.8.3;Filial Imprinting: Babies Learn to Recognize Their Parents ;583
8.8.4;Binocular Vision;585
8.8.5;Principles of Developmental Learning;590
8.8.6;References;593
9;Section IV: Sensory Systems;596
9.1;Chapter 22. Fundamentals of Sensory Systems;598
9.1.1;Sensation and Perception;598
9.1.2;Receptors;599
9.1.3;Peripheral Organization and Processing;601
9.1.4;Central Pathways and Processing;605
9.1.5;Sensory Cortex;606
9.1.6;Summary;609
9.1.7;References;609
9.2;Chapter 23. Sensory Transduction;612
9.2.1;Phototransduction;612
9.2.2;Olfactory Transduction;622
9.2.3;Taste;634
9.2.4;Mechanoreception;641
9.2.5;References;650
9.3;Chapter 24. Chemical Senses: Taste and Olfaction;652
9.3.1;Taste;652
9.3.2;Olfaction;670
9.3.3;References;687
9.4;Chapter 25. The Somatosensory System;688
9.4.1;Peripheral Mechanisms of Somatic Sensation;689
9.4.2;Spinal and Brain Stem Components of the Somatosensory System ;700
9.4.3;The Thalamic Ventrobasal Complex;709
9.4.4;Somatosensory Areas of the Cerebral Cortex;710
9.4.5;References;717
9.5;Chapter 26. Audition;720
9.5.1;Amplitude and Frequency Ranges of Hearing;720
9.5.2;External and Middle Ear;721
9.5.3;The Cochlea;722
9.5.4;The Auditory Nerve;726
9.5.5;Descending Systems to the Periphery;731
9.5.6;Central Nervous System;732
9.5.7;References;746
9.6;Chapter 27. Vision;748
9.6.1;Overview;748
9.6.2;The Eye and the Retina;750
9.6.3;The Retinogeniculocortical Pathway;760
9.6.4;References;771
10;Section V: Motor Systems;772
10.1;Chapter 28. Fundamentals of Motor Systems;774
10.1.1;Basic Components of the Motor System;776
10.1.2;Motor Programs Coordinate Basic Motor Patterns;777
10.1.3;Roles of Different Parts of the Nervous System in the Control of Movement ;779
10.1.4;Conclusion;786
10.1.5;References;786
10.2;Chapter 29. The Spinal Cord, Muscle, and Locomotion;788
10.2.1;Muscles and Their Control;788
10.2.2;Spinal Networks and the Segmental Motor System;796
10.2.3;Sensory Modulation;805
10.2.4;References;810
10.3;Chapter 30. Descending Control of Movement;812
10.3.1;The Medial Postural System;813
10.3.2;The Lateral Voluntary System;823
10.3.3;Summary;834
10.3.4;References;835
10.4;Chapter 31. The Basal Ganglia;836
10.4.1;Anatomy of Basal Ganglia;837
10.4.2;Signaling in Basal Ganglia;844
10.4.3;The Effect of Basal Ganglia Damage on Behavior;847
10.4.4;Fundamental Principles of Basal Ganglia Operation for Motor Control ;853
10.4.5;Basal Ganglia Participation in Nonmotor Functions;855
10.4.6;References;860
10.5;Chapter 32. Cerebellum;862
10.5.1;Overview;862
10.5.2;Organization of Signal Processing Modules;870
10.5.3;Neurons and Their Signals;874
10.5.4;Activation and Inactivation Studies;884
10.5.5;Phylogenetic and Ontogenetic Development;886
10.5.6;Overall Summary;891
10.5.7;References;892
10.6;Chapter 33. Eye Movements;894
10.6.1;There Are Five Types of Eye Movements;894
10.6.2;Oculomotor Nuclei and Extraocular Muscles;895
10.6.3;The Vestibulo-Ocular Re.ex;898
10.6.4;The Optokinetic System;901
10.6.5;The Saccadic System;902
10.6.6;Smooth Pursuit;908
10.6.7;Vergence;909
10.6.8;Conclusions;911
10.6.9;References;913
11;Section VI: Regulatory systems;916
11.1;Chapter 34. The Hypothalamus: An Overview of Regulatory Systems;918
11.1.1;Historical Perspective;918
11.1.2;General Organizational Principles of the Adult Hypothalamus ;921
11.1.3;Functional Organization of the Hypothalamus;922
11.1.4;Effector Systems of the Hypothalamus Are Both Humoral and Synaptic ;925
11.1.5;References;929
11.2;Chapter 35. Central Control of Autonomic Functions: Organization of the Autonomic Nervous System;932
11.2.1;Sympathetic Division: Organized to Mobilize the Body for Activity ;934
11.2.2;Parasympathetic Division: Organized for Energy Conservation ;939
11.2.3;The Enteric Division of the ANS: The Nerve Net Found in the Walls of Visceral Organs ;942
11.2.4;ANS Pharmacology: Transmitter and Receptor Coding ;942
11.2.5;Autonomic Controls of Homeostasis;945
11.2.6;Hierarchically Organized CNS Circuits;949
11.2.7;Perspective: Future of the Autonomic Nervous System ;952
11.2.8;Summary and General Conclusions;953
11.2.9;References;953
11.3;Chapter 36. Neural Regulation of the Cardiovascular System;956
11.3.1;Description of the System: An Anatomical Framework ;956
11.3.2;Anatomy and Chemical Properties of Efferent Autonomic Pathways ;964
11.3.3;A System of Generators;965
11.3.4;Short-Term Control Mechanisms;968
11.3.5;Reflex Control of the Cardiovascular System;968
11.3.6;Arterial Baroreceptors;969
11.3.7;Peripheral Arterial Chemoreceptors;975
11.3.8;Cardiac Receptors;977
11.3.9;Visceral Abdominal Re.exes;984
11.3.10;References;986
11.4;Chapter 37. Neural Control of Breathing;988
11.4.1;Early Neuroscience and the Brain Stem;988
11.4.2;Central Nervous System and Breathing Respiratory Rhythm Generation ;990
11.4.3;Where Are the Neurons That Generate the Breathing Rhythm? ;990
11.4.4;Which Neurons in the Prebötzinger Complex Are Required for Respiratory Rhythm Generation? ;992
11.4.5;Where Are the Respiratory Neurons?;995
11.4.6;Discharge Patterns of Respiratory Neurons;995
11.4.7;Sensory Inputs and Altered Breathing;1001
11.4.8;Mechanoreceptors in the Lungs Adjust Breathing Pattern and Initiate Protective Reflexes ;1003
11.4.9;Modulation and Plasticity of Respiratory Motor Output ;1005
11.4.10;Suprapontine Structures and Breathing;1010
11.4.11;References;1011
11.5;Chapter 38. Food Intake and Metabolism;1012
11.5.1;Caloric Homeostasis;1012
11.5.2;Role of Caloric Homeostasis in Control of Food Intake;1015
11.5.3;Central Control of Food Intake;1021
11.5.4;Neuropeptide and the Control of Food Intake;1025
11.5.5;References;1029
11.6;Chapter 39. Water Intake and Body Fluids;1032
11.6.1;Body Fluid Physiology;1032
11.6.2;Osmotic Homeostasis;1033
11.6.3;Volume Homeostasis;1041
11.6.4;References;1049
11.7;Chapter 40. Neuroendocrine Systems;1052
11.7.1;The Hypothalamus Is a Neuroendocrine Organ;1052
11.7.2;Hypothalamic Releasing/Inhibiting Hormones and Their Targets ;1054
11.7.3;Characteristics of Each Neuroendocrine System;1057
11.7.4;Hypothalamic Control of Sexual Behavior;1078
11.7.5;References;1086
11.8;Chapter 41. Circadian Timing ;1088
11.8.1;Circadian Rhythms Are a Fundamental Adaptation of Living Organisms ;1088
11.8.2;Circadian Timing Is Inherited;1089
11.8.3;Circadian Timing in Animals Is a Function of the Nervous System ;1091
11.8.4;The Suprachiasmatic Nucleus Is the Dominant Circadian Pacemaker ;1093
11.8.5;Light Is the Dominant Entraining Stimulus;1095
11.8.6;Pacemaker Output Is Limited;1098
11.8.7;The Avian Circadian Timing System Is More Complex Than That of Mammals ;1099
11.8.8;Circadian Timing Is Critical for Reproduction in Some Mammals ;1100
11.8.9;The Primate Circadian Timing System Functions Principally to Promote Behavioral Adaptation ;1102
11.8.10;References;1105
11.9;Chapter 42. Sleep, Dreaming, and Wakefulness;1106
11.9.1;The Two States of Sleep: Slow Wave and Rapid Eye Movement ;1108
11.9.2;Sleep in the Modern Era of Neuroscience;1110
11.9.3;Anatomy and Physiology of Brain Stem Regulatory Systems ;1112
11.9.4;Sensimotor and Modulatory Reticular Neurons Differ Functionally ;1113
11.9.5;Other Brain Stem and Diencephalic Neurotransmitter Systems ;1119
11.9.6;Modeling the Control of Behavioral State;1122
11.9.7;References;1128
11.10;Chapter 43. Motivation and Reward;1130
11.10.1;Neural Mechanisms of Motivation;1131
11.10.2;Dopamine and the Lateral Hypothalamic Syndrome ;1133
11.10.3;Reinforcement Systems;1137
11.10.4;Brain Aversion Systems;1144
11.10.5;References;1146
11.11;Chapter 44. Drug Reward and Addiction;1148
11.11.1;Assessing the Reinforcing Actions of Drugs;1149
11.11.2;Neurobiological Substrates of Drug Reward;1152
11.11.3;Neurobiological Substrates for Motivation Effects of Drug Dependence ;1157
11.11.4;Neurochemical Adaptation in Reward Neurotransmitters ;1158
11.11.5;Neuroadaptation, Prolonged Abstinence, and Relapse ;1160
11.11.6;References;1163
12;Section VII: Behavioral and Cognitive Neuroscience ;1166
12.1;Chapter 45. Human Brain Evolution;1168
12.1.1;Evolutionary and Comparative Principles;1168
12.1.2;Early Stages of Brain Evolution;1174
12.1.3;Evolution of Primate Brains;1177
12.1.4;Why Brain Size Is Important;1184
12.1.5;Conclusions;1185
12.1.6;References;1186
12.2;Chapter 46. Cognitive Development and Aging;1188
12.2.1;Brain Development;1188
12.2.2;Cognitive Development and Aging: A Life Span Perspective ;1193
12.2.3;Pathological Processes in Cognitive Development and Aging ;1207
12.2.4;References;1220
12.3;Chapter 47. Visual Perception of Objects;1222
12.3.1;The Problem of Object Recognition;1222
12.3.2;Substrates of Object Perception and Recognition: Early Evidence from Brain Damage ;1223
12.3.3;Visual Pathways for Object Processing in Nonhuman Primates ;1226
12.3.4;Neuronal Properties within the Object Recognition Pathway ;1229
12.3.5;Functional Imaging and Electrophysiology of Object Recognition in Humans ;1236
12.3.6;Perception and Recognition of Speci.c Classes of Objects ;1239
12.3.7;Object Knowledge Is Stored in a Distributed Network of Cortical Areas ;1245
12.3.8;References;1248
12.4;Chapter 48. Spatial Cognition;1250
12.4.1;Neuroanatomy of Spatial Cognition;1250
12.4.2;Parietal Cortex;1251
12.4.3;Frontal Cortex;1261
12.4.4;Hippocampus and Adjacent Cortex;1266
12.4.5;Spatial Cognition and Spatial Action;1267
12.4.6;References;1267
12.5;Chapter 49. Attention;1270
12.5.1;Introduction;1270
12.5.2;Varieties of Attention;1270
12.5.3;Covert Spatial Attention Has Been Studied Intensively with the Cuing Paradigm ;1271
12.5.4;Neglect Syndrome: A Deficit of Spatial Attention ;1273
12.5.5;The Network Mediating Spatial Attention in Humans Centers Around Frontal and Parietal Cortical Areas ;1274
12.5.6;Human Frontal and Parietal Cortical Areas Provide Top-down Signals Controlling Spatial Attention ;1275
12.5.7;Visual Salience Maps in Monkey Parietal and Frontal Cortices Guide the Deployment of Spatial Attention ;1275
12.5.8;Attention Increases Sensitivity and Boosts the Clarity of Signals Generated by Neurons in Parts of the Visual System Devoted to Processing Information about Objects ;1282
12.5.9;Attention Affects Neural Activity in the Human Visual Cortex in the Presence and Absence of Visual Stimulation ;1282
12.5.10;The Visual Search Paradigm Has Been Used to Study the Role of Attention in Selecting Relevant Stimuli from within a Cluttered Visual Environment ;1285
12.5.11;Where Is the Computational Bottleneck as Revealed by Search Tasks? ;1285
12.5.12;Neuronal Receptive Fields Are a Possible Neural Correlate of Limited Capacity ;1287
12.5.13;Competition Can Be Biased by Nonspatial Feedback ;1288
12.5.14;Filtering of Unwanted Information in Humans;1289
12.5.15;Closely Related Mechanisms Govern Covert Orienting and Target Selection for Eye Movements ;1290
12.5.16;Attentional State;1291
12.5.17;Monoamines Act as Neuromodulators;1291
12.5.18;Conclusions;1293
12.5.19;References;1293
12.6;Chapter 50. Learning and Memory: Basic Mechanisms;1296
12.6.1;Paradigms Have Been Developed to Study Associative and Nonassociative Learning ;1297
12.6.2;Invertebrate Studies: Key Insights from Aplysia into Basic Mechanisms of Learning ;1298
12.6.3;Vertebrate Studies: Long-Term Potentiation;1307
12.6.4;Long-Term Depression;1315
12.6.5;How Does a Change in Synaptic Strength Store a Complex Memory? ;1316
12.6.6;References;1318
12.7;Chapter 51. Learning and Memory: Brain Systems;1320
12.7.1;Early Proposals about Different Forms of Memory;1320
12.7.2;Emergence of the Modern Conception of Memory Systems ;1321
12.7.3;Declarative Memory;1325
12.7.4;Procedural Memory;1332
12.7.5;Emotional Memory;1336
12.7.6;Cerebral Cortex and Memory;1341
12.7.7;Conclusions;1347
12.7.8;References;1347
12.8;Chapter 52. Language and Communication;1350
12.8.1;Animal Communication;1350
12.8.2;Human Language;1356
12.8.3;Conclusions;1372
12.8.4;References;1373
12.9;Chapter 53. The Prefrontal Cortex and Executive Brain Functions;1374
12.9.1;Controlled versus Automatic Processing;1374
12.9.2;Anatomy and Organization of the Prefrontal Cortex;1379
12.9.3;Behavioral Effects of Damage to the Prefrontal Cortex ;1380
12.9.4;Neurophysiology of the Prefrontal Cortex;1389
12.9.5;Theories of Prefrontal Cortex Function;1394
12.9.6;References;1397
12.10;Chapter 54. Executive Control and Thought;1398
12.10.1;Introduction;1398
12.10.2;Working Memory: Storage and Updating;1400
12.10.3;Selective Attention;1404
12.10.4;Switching Attention;1409
12.10.5;What Are the Components in Complex Tasks?;1412
12.10.6;References;1414
13;Permissions;1416
14;Contributors;1418
15;Index;1422




