E-Book, Englisch, Band 55, 573 Seiten, eBook
Reihe: IFMBE Proceedings
ICNBME-2015, September 23-26, 2015, Chisinau, Republic of Moldova
E-Book, Englisch, Band 55, 573 Seiten, eBook
Reihe: IFMBE Proceedings
ISBN: 978-981-287-736-9
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Committees;8
3;Table of Contents;11
4;Part I Nanotechnologies and Nanomaterials;20
4.1;Role of Charge-Transfer Complexes in Regulation of Processes Associatedwith Redistribution Electron Density in Biocomposite Systems;21
4.1.1;I. INTRODUCTION;21
4.1.2;II. THEORETICAL MODEL;21
4.1.3;III. RESULTS AND DISCUSSION;22
4.1.4;IV. CONCLUSIONS;24
4.1.5;REFERENCES;25
4.2;Influence of Resonant Optical Phonons on IntersubbandMagnetoabsorption in Nanowires;26
4.2.1;I. INTRODUCTION;26
4.2.2;II. THEORETICAL APPROACH;26
4.2.3;III. RESULTS AND DISCUSSION;28
4.2.4;IV. CONCLUSIONS;30
4.2.5;REFERENCES;30
4.3;Peculiarity of High-Field Galvanomagnetic Effects in Bicrystalsof Bi and Its Alloys with Sb;31
4.3.1;I. INTRODUCTION;31
4.3.2;II. EXPERIMENTAL PROCEDURE;31
4.3.3;III. RESULTS AND DISCUSSION;32
4.3.4;IV. CONCLUSION;34
4.4;Effective Transfer of UV Energy to Red Luminescence in the NanocompositesPolymer/Eu Coordination Compounds;35
4.4.1;I. INTRODUCTION;35
4.4.2;II. PREPARATION TECHNOLOGY ANDEXPERIMENTAL SET-UP;35
4.4.3;III. EXPERIMENTAL RESULTS;36
4.4.4;IV. DISCUSSION OF RESULTS;37
4.4.5;V. CONCLUSION;38
4.5;Transfer of Heat between Electrons and Phonons in Metallic Nanostructures;39
4.5.1;I. INTRODUCTION;39
4.5.2;II. NORMALIZATION AND ELECTRONPHONON COUPLING;40
4.5.3;III. THE HEAT FLUX;41
4.5.4;IV. CONCLUSIONS;42
4.6;Theory of Catalytic Micro- and Nanoengines: From Self-propulsion Mechanismsto Remediation of Polluted Water;43
4.6.1;I. INTRODUCTION;43
4.6.2;III. SELF-PROPELLED MICROMOTORS FORCLEANING POLLUTED WATER;45
4.6.3;IV. CONCLUSIONS;46
4.6.4;REFERENCES;46
4.7;Characterisation of Silicon Nanolayers Deposited by Plasma Enhanced ChemicalVapor Deposition on 3-D ZnO Templates for Hollow Silicon Microstructures;48
4.7.1;I. INTRODUCTION;48
4.7.2;II. EXPERIMENTAL;48
4.7.3;III. RESULTS AND DISCUSSION;49
4.7.4;IV. CONCLUSION;51
4.7.5;REFERENCES;51
4.8;Two-Dimensional Cavity Polaritons under the Influence of the LandauQuantization, Rashba Spin-Orbit Coupling and Zeeman Splitting;53
4.8.1;I. INTRODUCTION;53
4.8.2;II. THE HAMILTONIAN DESCRIBING THE 2DMAGNETOEXCITONS, CAVITY PHOTONS ANDTHEIR INTERACTION;53
4.8.3;III. THE ENERGY SPECTRUM OF THE CAVITYMAGNETOEXCITON-POLARITONS;54
4.8.4;IV. CONCLUSIONS;56
4.9;Detection in the Contacts with HTSC - InSb: Numerical Modelingof the Contact Area Role;58
4.9.1;I. INTRODUCTION;58
4.9.2;II. RESULTS AND DISCUSSION;58
4.9.3;III. CONCLUSIONS;60
4.10;XRD and XPS of Cd2SnO4 Thin Films Obtained by Spray Pyrolysis;61
4.10.1;I. INTRODUCTION;61
4.10.2;II. EXPERIMENTAL;61
4.10.3;III. REZULTS AND DISCUSION;61
4.10.4;IV. CONCLUSION;64
4.10.5;REFERENCES;64
4.11;Superconductivity on the Background of the State of the Spin DensityWave in Anisotropic Systems;65
4.11.1;I. INTRODUCTION;65
4.11.2;II. MATERIAL AND METHODS;65
4.11.3;III. RESULTS AND DISCUSSION;67
4.12;Peculiarities of Seebeck Effect in Strained Bismuth Nanowires;69
4.12.1;I. INTRODUCTION;69
4.12.2;II. RESULTS AND DISCUSSION;70
4.12.3;III. CONCLUSIONS;72
4.12.4;REFERENCES;72
4.13;X-Ray Photoelectronic Spectroscopy of GaN, AlGaN Layers, Grown on Siliconby the Chemical Transport Reactions Method;74
4.13.1;I. INTRODUCTION;74
4.13.2;II. EXPERIMENTAL;75
4.13.3;III. RESULTS AND DISCUSION;75
4.13.4;IV. CONCLUSION;77
4.13.5;REFERENCES;77
4.14;Birefraction in CdP2 Photodiodes;78
4.14.1;I. INTRODUCTION;78
4.14.2;II. EXPERIMENTAL METHODS;78
4.14.3;III. RESULTS;78
4.14.4;IV. CONCLUSIONS;81
4.14.5;REFERENCES;81
4.15;Birefractive Effects in Quantum Wells;82
4.15.1;I. INTRODUCTION;82
4.15.2;II. EXPERIMENTAL METHODS;82
4.15.3;III. RESULTS;82
4.15.4;IV. CONCLUSIONS;85
4.15.5;REFERENCES;85
4.16;Optical Properties of ZnAl2Se4 Crystals;86
4.16.1;I. INTRODUCTION;86
4.16.2;II. EXPERIMENTAL METHODS;86
4.16.3;III. RESULTS;86
4.16.4;IV. CONCLUSIONS;89
4.16.5;REFERENCES;89
4.17;Nanomultilayer As2S3:Mn-Se Systems: Properties and Use as the Recording Media;90
4.17.1;I. INTRODUCTION;90
4.17.2;II. EXPERIMENTAL RESULTS AND DISCUSSION;90
4.17.3;III. CONCLUSIONS;93
4.17.4;REFERENCES;93
4.18;Properties of Carbazole-Based Azopolymer Used in Formation of PhotoinducedSurface Relief Gratings;94
4.18.1;I. INTRODUCTION;94
4.18.2;II. EXPERIMENTAL;94
4.18.3;III. RESULTS;96
4.18.4;IV. CONCLUSIONS;98
4.18.5;REFERENCES;98
4.19;The Impact of Porosification upon Luminescence of HVPE Grown GaNand the Influence of the Porous Layer upon the Quality of the Overgrown GaN Film;99
4.19.1;I. INTRODUCTION;99
4.19.2;II. EXPERIMENTAL;99
4.19.3;III. RESULTS AND DISCUSSIONS;100
4.19.4;IV. CONCLUSIONS;102
4.19.5;REFERENCES;102
4.20;Chronic Toxicity of Silver Nanoparticles;103
4.20.1;I. INTRODUCTION;103
4.20.2;II. MATERIALS AND METHODS;103
4.20.3;III. RESULTS;104
4.20.4;IV. DISCUSSION;105
4.21;Effect of Spin Coating Technique on Mechanical Properties of Silicophosphate ThinFilm Doped by Neodymium;107
4.21.1;I. INTRODUCTION;107
4.21.2;II. EXPERIMENTAL;107
4.21.3;III. RESULTS;107
4.21.4;IV. CONCLUSIONS;110
4.22;Characterization of TiO2 Nanoparticles and ZnO/TiO2 Composite Obtainedby Hydrothermal Method;111
4.22.1;I. INTRODUCTION;111
4.22.2;II. MATERIAL SYNTHESIS;111
4.22.3;III. CHARACTERIZATION;112
4.22.4;IV. CONCLUSION;114
4.23;Fabrication of Bismuth Telluride Wire Thermoelectric Devices;115
4.23.1;I. INTRODUCTION;115
4.23.2;II. BISMUTH TELLURIDE WIRE ARRAYS;115
4.23.3;III. ISOLATING BITE WIRES;116
4.23.4;IV. CONCLUSIONS;118
4.24;Nanolayers with Advanced Properties for Superconducting Spintronics;119
4.24.1;I. NANOSTRUCTURES DEPOSITION ANDCHARACTERIZATION;119
4.24.2;II. TRILAYER STRUCTURES;119
4.24.3;III. SUPERCONDUCTING PROPERTIES OFCU41NI59 /NB/CU41NI59 TRILAYERS;120
4.24.4;IV. FIVE-LAYER SPIN VALUE STRUCTURE;121
4.24.5;V. MAGNETIC PROPERTIES OF FIVE-LAYER STRUCTURE;121
4.24.6;VI. CONCLUSIONS;122
4.25;Application of the Strenghening Nanostructured Coatings Obtainedat Electrodischarge Treatment by Tool Electrodes Manufacturing from Al-Sn Alloy;123
4.25.1;I. INTRODUCTION;123
4.25.2;II. OBTAINING COATINGS USING ESD;123
4.25.3;III. APPLICATION OF TOOL ELECTRODESMADE FROM AL-SN FOR THE RECOVERYOF MATCHING SITES OF ROLLING BEARINGS;126
4.25.4;IV. THE USE OF THE TOOL ELECTRODESFROM AL-SN TO ELIMINATE LEAKS INALUMINIUM TUBES OF HEAT EXCHANGE UNITS;127
4.26;Structural, Optical and Electrical Properties of ZnO: Al Thin Films Synthesizedby Sol-gel Method;129
4.26.1;I. INTRODUCTION;129
4.26.2;II. MATERIAL AND METHODS;129
4.26.3;III. RESULTS AND DISCUSSION;129
4.26.4;IV. CONCLUSIONS;132
4.27;Single Nanowire Nanosensors: A Case Study of the Effects of Metal Doping on ZnO;133
4.27.1;I. INTRODUCTION;133
4.27.2;II. EXPERIMENTAL;133
4.27.3;III. RESULTS AND DISCUSSION;134
4.27.4;IV. CONCLUSIONS;136
4.28;Anisotropic Thermoelectric Generator Made from Single Crystal Bi Microwire;137
4.28.1;I. INTRODUCTION;137
4.28.2;II. SAMPLE AND EXPERIMENT;137
4.28.3;III. RESULTS AND DISCUSSION;138
4.28.4;IV. CONCLUSIONS;140
4.29;Removal of Barrier Oxide in the Anodized Aluminum Oxide Nanotemplates;141
4.29.1;I. INTRODUCTION;141
4.29.2;II. MATERIALS AND METHODS;141
4.29.3;III. RESULTS AND DISSCUSIONS;142
4.29.4;IV. CONCLUSIONS;144
4.30;Cavity Field Suppression via Interference Effects;145
4.30.1;I. INTRODUCTION;145
4.30.2;II. QUANTUM DYNAMICS OF A PUMPED TWOLEVELATOM INSIDE A DRIVEN PHOTONICCRYSTAL MICROCAVITY;145
4.30.3;III. CONCLUSIONS;147
4.31;Slow Relaxation of Magnetization in a Family ofLinear MnIIIMIIIMnIII (M = Fe, Ru, Os) Compounds;149
4.31.1;I. INTRODUCTION;149
4.31.2;II. MODEL;149
4.31.3;III. RESULTS;150
4.31.4;IV. SUMMARY;151
4.32;Slow Magnetic Relaxation in Dysprosium Based Single-Ion Magnets;152
4.32.1;I. INTRODUCTION;152
4.32.2;II. MODEL;152
4.32.3;III. RESULTS;153
4.32.4;IV. SUMMARY;154
4.33;Electric Field Control of Magnetic and Polarizability Propertiesof Trimeric Mixed Valence Clusters;156
4.33.1;I. INTRODUCTION;156
4.33.2;II. THE MODEL;156
4.33.3;III. ANISOTROPY OF POLARIZABILITY;157
4.33.4;IV. FIELD AND TEMPERATURE DEPENDENCEOF THE EFFECTIVE MAGNETIC MOMENT;158
4.33.5;V. CONCLUSIONS;159
4.34;Perspectives of Bulk and Nanosized II-VI Compoundsfor Light-Emission Application;160
4.34.1;I. INTRODUCTION;160
4.34.2;II. RESULTS AND DISCUSSION;160
4.34.3;III. CONCLUSIONS;163
4.34.4;REFERENCES;163
4.35;Spiropyran Based Smart Composites: Memorizing Polymer with Enhanced Molecular Switches;164
4.35.1;I.INTRODUCTION;164
4.35.2;II. EXPERIMENTS;164
4.35.3;III. RESULTS AND DISCUSSION;165
4.35.4;IV. CONCLUSIONS;166
4.36;Sensing Properties of Ultra-Thin TiO2 Nanostructured Films Based Sensors;167
4.36.1;I. INTRODUCTION;167
4.36.2;II. EXPERIMENTAL;167
4.36.3;III. RESULTS;168
4.36.4;IV. CONCLUSIONS;170
4.37;Nanotechnological Application Based on CoFe2O4 Nanoparticlesand Electromagnetic Exposure on Agrotechnical Plant Growth;171
4.37.1;I. INTRODUCTION;171
4.37.2;II. MATERIALS AND METHODS;171
4.37.3;III. RESULTS AND DISCUSSION;172
4.37.4;IV. CONCLUSIONS;174
4.38;Application of Nano-Oxide Films on the Surfaces of Parts Made of Titanium Alloysin Order to Increase Their Corrosion Resistance;175
4.38.1;I. INTRODUCTION;175
4.38.2;II. METHODOLOGY OF EXPERIMENTALINVESTIGATIONS;175
4.38.3;III. RESULTS OF EXPERIMENTALINVESTIGATIONS;176
4.38.4;IV. CONCLUSIONS;177
4.39;Entanglement among Photon and Phonon Degrees of Freedom;178
4.39.1;I. INTRODUCTION;178
4.39.2;II. ANALITICAL MODEL;178
4.39.3;III. RESULTS;179
4.39.4;IV. CONCLUSIONS;180
4.40;Activation Process of GaAs NEA Photocathode and Its Spectral Sensitivity;181
4.40.1;I. INTRODUCTION;181
4.40.2;II. EXPERIMENTAL;181
4.40.3;III. RESULTS AND DISCUSSION;182
4.40.4;IV. SUMMARY;184
4.41;Anticipated Synchronization of Passive Dispersive Reflector Semiconductor Laser;185
4.41.1;i. INTRODUCTION;185
4.41.2;ii. MODEL SKETCH;185
4.41.3;III. NUMERICAL RESULTS;186
4.41.4;IV. CONCLUSIONS;188
4.42;Observation of Electron Spin Relaxation Time in Pnpn Structured GaAs;189
4.42.1;I. INTRODUCTION;189
4.42.2;II. PNPN STRUCTURE;189
4.42.3;III. POLARIZATION RESOLVED PL SPECTRALMEASUREMENTS;190
4.42.4;IV. POLARIZATION AND TIME-RESOLVED PLMEASUREMENTS;191
4.42.5;V. CONCLUSION;191
4.43;Evaluation of Spin Relaxation Time by Polarization- and Time-Resolved Pumpand Probe Measurements;193
4.43.1;I. INTRODUCTION;193
4.43.2;II. CONDITIONS FOR OBSERVING SPINSUPERPOSITION;193
4.43.3;III. PUMP-PROBE (PP) MEASUREMENTS;194
4.43.4;IV. CONCLUSIONS;196
4.44;The Influence of External Cavity Optical Feedback on the Dynamics of QuantumDots Lasers;197
4.44.1;I. INTRODUCTION;197
4.44.2;II. MODEL AND EQUATIONS;197
4.44.3;III. NUMERICAL RESULTS AND DISCUSSIONS;198
4.44.4;IV. CONCLUSIONS;200
4.45;PbTe Nanoparticles Obtaining and Studies of Their Electrical Properties;201
4.45.1;I. INTRODUCTION;201
4.45.2;II. EXPERIMENTAL REZULTS AND DISCUSSION;201
4.45.3;III. CONCLUSIONS;203
4.46;Plasmonic Effects for Enhanced Optical Mixing in View of THz Signal Generation;204
4.46.1;I. INTRODUCTORY REMARKS;204
4.46.2;II. DESIGN OF OTHER TYPICAL GRAPHENETHZ SOURCES;204
4.46.3;III. FABRICATION TECHNOLOGY;204
4.46.4;IV. PLASMONICS AND GRAPHENE FOR THZGENERATION BY OPTICAL MIXING;205
4.46.5;V. CONCLUSION;205
4.47;Features of Nanotemplates Manufacturing on the II-VI Compound Substrates;206
4.47.1;I. INTRODUCTION;206
4.47.2;II. EXPERIMENTAL TECHNIQUE;206
4.47.3;III. RESULTS AND DISCUSSION;206
4.47.4;IV. CONCLUSIONS;209
4.48;Excitonic Luminescence, X-ray Analysis and Local Band Structureof Chlorine Intercalated 2H- and 3R-MoS2 Polytypes;210
4.48.1;I. INTRODUCTION;210
4.48.2;II. EXPERIMENTAL PROCEDURE;210
4.48.3;III. THEORETICAL CALCULATIONS;211
4.48.4;IV. RESULTS AND DISCUSSIONS;211
4.48.5;V. CONCLUSIONS;213
4.49;Exciton-polariton Laser;214
4.49.1;I. INTRODUCTION;214
4.49.2;II. A SHORT REVIEW RELATED TO THE BEC INA SYSTEM OF 2D CAVITY POLARITONS INSEMICONDUCTOR NANOSTRUCTURES;214
4.49.3;III. CONCLUSIONS;217
4.50;Preparation of Fine Bentonite Suspensions in Cavitation Fields;219
4.50.1;I. INTRODUCTION;219
4.50.2;II. EXPERIMENTAL;219
4.50.3;III. RESULTS AND DISCUSSION;220
4.50.4;IV. CONCLUSIONS;222
4.50.5;REFERENCES;222
4.51;Influence of Fe Catalyst Morphology on the Growing of Carbon Nanotubes;223
4.51.1;I. INTRODUCTION;223
4.51.2;II. EXPERIMENTAL;223
4.51.3;III. RESULTS AND DISCUSSION;224
4.51.4;IV. CONCLUSIONS;225
4.51.5;REFERENCES;226
4.52;Investigation of the Generalized Anderson Impurity Model;227
4.52.1;I. INTRODUCTION;227
4.52.2;II. CANONIC TRANSFORMATION;227
4.52.3;III. GREEN’S FUNCTIONS;229
4.52.4;IV. CONCLUSIONS;230
4.52.5;REFERENCES;230
4.53;Thermoelectric Properties of Bi1-xSbx Alloys, Wires and Foils;231
4.53.1;I. INTRODUCTION;231
4.53.2;II. SAMPLES AND EXPERIMENT;231
4.53.3;III. RESULTS AND DISCUSSIONS;232
4.53.4;IV. CONCLUSIONS;235
4.53.5;REFERENCES;234
4.54;Prospect Nanostructured Material for Thermoelectric Sensors of Infrared Radiations;236
4.54.1;I. INTRODUCTION;236
4.54.2;II. HIGH-CONDUCTIVE COMPLEX TTT(TCNQ)2;237
4.54.3;III. TRANSPORT PROPERTIES;237
4.54.4;IV. RESULTS AND DISCUSSIIONS;238
4.54.5;V. CONCLUSIONS;239
4.54.6;REFERENCES;239
4.55;The Generalization of Scientific and Educational Materials on Nanoelectronics;240
4.55.1;I. INTRODUCTION;240
4.55.2;II. BASICALLY INFORMATION;240
4.55.3;III. CONCLUSIONS;242
4.55.4;REFERENCES;243
4.56;Study of a New Colloidal Composite: Polymer-Magnetite Particles/LyotropicLiquid Crystal;244
4.56.1;I. INTRODUCTION;244
4.56.2;ii. EXPERIMENTAL PROCEDURES;244
4.56.3;III. RESULTS AND DISCUSSIONS;246
4.56.4;IV. CONCLUSIONS;247
4.56.5;REFERENCES;247
4.57;Polaron Theory of the Emission Current in a Cathode-Adsorbed Nanofilm Systemat the Initial Stage of a High-Voltage Gas Discharge;248
4.57.1;I. INTRODUCTION;248
4.57.2;II. ORIGINAL FORMULA FOR THE NORDHEIMFUNCTION;248
4.57.3;III. DISCUSSION;251
4.57.4;REFERENCES;251
4.58;Zero Frequency Spectrum of 3-D Metal Photonic Crystals Obtainedby the 3-D Kronig–Penney Model;252
4.58.1;I. INTRODUCTION;252
4.58.2;II. THE EQUATION FOR METALLICNANOSPHERES;252
4.58.3;III. A MODEL PROBLEM FOR A SIMPLEST-TYPENANOSPHERE;253
4.58.4;IV. ZERO FREQUENCY SPECTRUM OF 3DMETAL PHOTONIC CRYSTALS;254
4.58.5;V. CONCLUSIONS;255
4.58.6;REFERENCES;255
4.59;Conditions for Plasma Obtaining in the Gaseous Media and Its Applicationin Nanotechnology;256
4.59.1;I. INTRODUCTION;256
4.59.2;II. THEORETICAL PREMISES ON PLASMAOBTAINING IN THE GASEOUS MEDIA;257
4.59.3;III. METHODOLOGY OF EXPERIMENTALINVESTIGATIONS;259
4.59.4;IV. RESULTS OF EXPERIMENTALINVESTIGATIONS;259
4.59.5;V. CONCLUSIONS;260
4.59.6;REFERENCES;260
5;Bio-Nanotechnologies and Biomaterials;261
5.1;Quantum Information Processes in Protein Microtubules of Brain Neurons;262
5.1.1;I. INTRODUCTION;262
5.1.2;II. FLUCTUATION FUNCTION OF PROTEINMICROTUBULES;263
5.1.3;III. QUANTUM ENTANGLEMENT AND NON-LOCAL MODELS OF QUANTUM INFORMATION PROCESSES IN MICROTUBULESOF BRAIN NEURONS;265
5.1.4;IV. CONCLUSIONS;265
5.1.5;REFERENCES;265
5.2;Functional Ecofriendly Coatings for Marine Applications;267
5.2.1;I. INTRODUCTION;267
5.2.2;II. MATERIALS AND METHODS;268
5.2.3;III. RESULTS;268
5.2.4;IV. CONCLUSION;269
5.2.5;REFERENCES;270
5.3;New Opportunities For Biomedicine;271
5.3.1;I. INTRODUCTION;271
5.3.2;II. GENERAL CONCEPTS OF SPIN ANDORBITAL MOMENTS;272
5.3.3;III. MECHANISM OF SPINAND ORBITAL MOMENTS;272
5.3.4;IV. RESULTS OF EXPERIMENTAL MODULATIONFOR GENERATED SPIN FLOWS;274
5.3.5;CONCLUSION;275
5.3.6;REFERENCES;275
5.4;New Perspective for Biomedical Productions: Application of Cast AmorphousMicrowire for Electromagnetic Absorption;276
5.4.1;I. INTRODUCTION;276
5.4.2;II. DATABASE AND METHODS;277
5.4.3;III. RESULTS;278
5.4.4;IV. CONCLUSIONS;279
5.4.5;REFERENCES;280
5.5;Assessment of the Antimicrobial Activity of Polymer Materials with AddedNanosilica Modified by Silver Compounds;281
5.5.1;I. INTRODUCTION;282
5.5.2;II. MATERIALS AND METHODS;282
5.5.3;III. RESULTS;282
5.5.4;IV. CONCLUSION;283
5.5.5;V. FUNDING;283
5.5.6;REFERENCES;283
5.6;Antibacterial Properties of the Nanoparticles with the Zinc Sulfide Quantum Dots;284
5.6.1;I. INTRODUCTION;284
5.6.2;II. DATABASE AND METHODS;285
5.6.3;III. RESULTS;285
5.6.4;IV. CONCLUSIONS;286
5.6.5;REFERENCES;287
5.7;Influence of Dispersed Solutions of Copper, Silver, Bismuth and Zinc OxideNanoparticles on Growth and Catalase Activity of Penicillium Funiculosum;288
5.7.1;I. INTRODUCTION;288
5.7.2;II. DATABASE AND METHODS;289
5.7.3;III. RESULTS;290
5.7.4;IV. CONCLUSION;290
5.7.5;REFERENCES;291
5.8;Effect of Aqueous Dispersions with NPAg, NPCu, NPBi, and ZnNO, Millimeter-Wave Radiation, and Weak Magnetic Fields on the Germination of Triticale andWheat Seeds under the Action of a Pathogenic Fungus and Low Temperatures;292
5.8.1;I. INTRODUCTION;292
5.8.2;II. DATABASE AND METHODS;292
5.8.3;III. RESULTS;293
5.8.4;IV. CONCLUSION;295
5.8.5;REFERENCES;296
5.9;Theoretical Treatment of Millimeter and Terahertz Radiation Actionon Biological Media;297
5.9.1;I. INTRODUCTION;297
5.9.2;II. MODEL HAMILTONIAN AND EQUATIONOF MOTIONS;297
5.9.3;III. STEADY STATE, DIELECTRIC FUNCTIONSAND THEIR PROPERTIES;298
5.9.4;IV. NUMERICAL RESULTS;299
5.9.5;V. CONCLUSIONS;300
5.10;Fabrication MEMS Platform for Sensors Applications by Laser Micro Engraving;302
5.10.1;I. INTRODUCTION;302
5.10.2;II. EXPERIMENT;303
5.10.3;III. RESULTS AND DISCUSSION;303
5.10.4;IV. CONCLUSIONS;305
5.10.5;REFERENCES;304
5.11;A Novel Bioactive Compound of Palladium(II) with Mercaptoethanol;306
5.11.1;I. INTRODUCTION;306
5.11.2;II. RESULTS AND ANALYSIS;306
5.11.3;III. CONCLUSIONS;308
5.11.4;REFERENCES;308
5.12;Copper-Containing Polyoxometalates: Syntheses and Anticancer Activityagainst the SH-SY5Y Human Neuroblastoma Cell Line;309
5.12.1;I. INTRODUCTION;309
5.12.2;II. MATERIALS AND METHODS;309
5.12.3;III. RESULTS AND DISCUSSION;311
5.12.4;IV. CONCLUSIONS;313
5.12.5;REFERENCES;313
5.13;Genotoxicity of Nanoparticulate Zinc Ferrite – Possible Application in PlantBiotechnology;314
5.13.1;I. INTRODUCTION;314
5.13.2;II. MATERIALS AND METHODS;314
5.13.3;III. RESULTS AND DISCUSSION;315
5.13.4;IV. CONCLUSIONS;317
5.13.5;REFERENCES;317
5.14;Enhancement of Antioxidant and Antibacterial Activities by Immobilization of Natural Bactericide into Hybrid Supra-molecular Chitosan Bio-composite Gel;318
5.14.1;I. INTRODUCTION;318
5.14.2;II. MATERIALS AND METHODS;318
5.14.3;III. RESULTS AND DISCUSSIONS;318
5.14.4;IV. CONCLUSIONS;318
5.15;Antimicrobial Reagents as Functional Finishing for Textiles Intendedfor Biomedical Applications. II. Metals and Metallic Compounds: Silver;322
5.15.1;I. INTRODUCTION;322
5.15.2;II. SILVER FORMULATIONS;322
5.15.3;III. MECHANISM OF BIOCIDE ACTION;323
5.15.4;IV. AG-FUNCTIONALIYED TEXTILES FORBIOMEDICAL APPLICATIONS;323
5.15.5;V. CONCLUSIONS;324
5.15.6;REFERENCES;325
5.16;Antimicrobial Reagents as Functional Finishing for Textiles Intendedfor Biomedical Applications. III. Other Metals and Metallic Compounds;326
5.16.1;I. INTRODUCTION;326
5.16.2;II. FORMULATIONS AND MECHANISMOF ACTION;326
5.16.3;III. TEXTILE FINISHING APPROACHES;329
5.16.4;IV. CONCLUSIONS;330
5.16.5;REFERENCES;330
5.17;Biological Evaluation of Slip Casting Hydroxyapatite Intended for Cranioplasty;332
5.17.1;I. INTRODUCTION;332
5.17.2;II. MATERIALS AND METHODS;332
5.17.3;III. RESULTS AND DISCUSSIONS;333
5.17.4;IV. CONCLUSIONS;335
5.17.5;REFERENCES;335
5.18;Nanofibers for Tissue Engineering and Regenerative Medicine;336
5.18.1;I. INTRODUCTION;336
5.18.2;II. POLY (?-CAPROLACTONE);336
5.18.3;III. ELECTROSPINNING;336
5.18.4;IV. ELECTROSPUN PCL NANOFIBERS;337
5.18.5;V. CONCLUSION;338
5.18.6;REFERENCES;339
5.19;Biocompatible SPIONs with Superoxid Dismutase/Catalase Immobilizedfor Cardiovascular Applications;340
5.19.1;I. INTRODUCTION;341
5.19.2;II. MATERIALS AND METHODS;341
5.19.3;III. RESULTS AND DISCUSSIONS;341
5.19.4;IV. CONCLUSIONS;343
5.19.5;REFERENCES;343
6;Part IIIBiomedical Instrumentation and Biosensors;344
6.1;Multilevel Signal Processing for Biomedical Nanodevices;345
6.1.1;I. INTRODUCTION;345
6.1.2;II. MANAGEMENT OF DISEASES;345
6.1.3;III. UBIQUITOUS MEDICAL SENSORNETWORKS;347
6.1.4;IV. CONCLUSIONS;347
6.1.5;REFERENCES;347
6.2;Transmission of Resistance Sensor Signals over Multi-wire Line with Losses;348
6.2.1;I. INTRODUCTION;348
6.2.2;II. STATEMENT OF THE PROBLEM;348
6.2.3;III. BALANCED MULTI-PORT CIRCUITS;348
6.2.4;IV. PROJECTIVE COORDINATES OF THEOUTPUT;349
6.2.5;V. PROJECTIVE COORDINATES OF THE INPUT;351
6.2.6;VI. CONCLUSIONS;351
6.2.7;REFERENCES;351
6.3;Projective Geometry Invariants of Human Body and Multi-port Electrical Circuits;352
6.3.1;I. INTRODUCTION;352
6.3.2;II. SOME FACTS ABOUT PROJECTIVETRANSFORMATION;352
6.3.3;III. PROJECTIVE TRANSFORMATIONS OF ANELECTRICAL NETWORK FOR LINES AND PLANES;353
6.3.4;IV. PROJECTIVE SPACE OF A MULTI-PORTNETWORK;355
6.3.5;V. CONCLUSIONS;355
6.3.6;REFERENCES;355
6.4;UV Effect on NO2 Sensing Properties of Nanocrystalline In2O3;356
6.4.1;I. INTRODUCTION;356
6.4.2;II. DATABASE AND METHODS;356
6.4.3;III. RESULTS;357
6.4.4;IV. CONCLUSION;359
6.4.5;REFERENCES;360
6.5;Sensitivity Evaluation of the Nanostructure-Enhanced BAW Mass Sensor;361
6.5.1;I. INTRODUCTION;361
6.5.2;II. SENSING LAYER PARAMETERSEXTRACTION;361
6.5.3;III. MODEL CONSIDERATION FOR BAWSENSOR;362
6.5.4;IV. CONCLUSIONS;364
6.5.5;REFERENCES;364
6.6;Effect of Dopant on Selectivity of CuO Nanostructured Films – Based Sensors;365
6.6.1;I. INTRODUCTION;365
6.6.2;II. EXPERIMENTAL;365
6.6.3;III. RESULTS AND DISCUSSION;365
6.6.4;IV. CONCLUSIONS;368
6.6.5;REFERENCES;368
6.7;Photocatalytic Applications of Doped Zinc Oxide Porous Films Grownby Magnetron Sputtering;369
6.7.1;I. INTRODUCTION;369
6.7.2;II. EXPERIMENTAL;369
6.7.3;III. RESULTS;370
6.7.4;IV. CONCLUSIONS;372
6.7.5;REFERENCES;372
6.8;A DVG003 Medical Device for Millimeter Wave Therapy;373
6.8.1;I. INTRODUCTION;373
6.8.2;II. OVERVIEW;373
6.8.3;III. DESCRIPTION OF PATENTED SOLUTIONS;373
6.8.4;IV. DESIGN DESCRIPTION;375
6.8.5;REFERENCES;376
6.9;Hydrogen Gas Sensor Based on Nanograined Pd/?-MoO3 Belts;377
6.9.1;I. INTRODUCTION;377
6.9.2;II. EXPERIMENTAL;378
6.9.3;III. RESULTS;379
6.9.4;IV. CONCLUSIONS;380
6.9.5;REFERENCES;380
6.10;Hypothermia Device Used in Medicine;381
6.10.1;I. INTRODUCTION;381
6.10.2;II. EXPERIMENT;381
6.10.3;III. FUZZY ALGORITHM;382
6.10.4;IV. CONSTRUCTION;383
6.10.5;V. CIRCUITS;384
6.10.6;VI. CONCLUSION;385
6.10.7;REFERENCES;385
6.11;Accuracy Analysis of Measurements in Electrochemical Biosensing;386
6.11.1;I. INTRODUCTION;386
6.11.2;II. MATERIAL AND METHODS;386
6.11.3;III. RESULTS, DISCUSSION;387
6.11.4;IV. CONCLUSIONS;389
6.11.5;REFERENCES;389
6.12;Electronic Circuits for Graphene-Based Biosensor;390
6.12.1;I. INTRODUCTION;390
6.12.2;II. DEVELOPEMENT OF BIOSENSINGELECTRODE;390
6.12.3;III. TWO CONCEPTS;391
6.12.4;IV. COMPARISON OF BOTH SYSTEMS IN EIS MEASUREMENTS;393
6.12.5;V. CONCLUSIONS;393
6.12.6;REFERENCES;393
6.13;Pulsatile Mechanical Heart Assist Device;394
6.13.1;I. INTRODUCTION;394
6.13.2;II. MATERIALS AND METHODS;394
6.13.3;III. RESULTS;395
6.13.4;IV. DISCUSSIONS;396
6.13.5;V. CONCLUSIONS;397
6.13.6;REFERENCES;397
6.14;Impedance Characterization of Gas Sensitive S-Te Based QuaternaryChalcogenides;398
6.14.1;I. INTRODUCTION;398
6.14.2;II. MATERIALS AND METHODS;398
6.14.3;III. RESULTS;399
6.14.4;IV. DISCUSSION;403
6.14.5;V. CONCLUSIONS;403
6.14.6;REFERENCES;403
7;Part IVBiomedical Signal and Image Processing;405
7.1;Automated Morphometry of Neutrophilic Granulocytes – A Simple and ReliableMethod of Assessment of the Wound Process Activity;406
7.1.1;I. INTRODUCTION;406
7.1.2;ii. MATERIALS AND METHODS;406
7.1.3;III. RESULTS;407
7.1.4;IV. CONCLUSION;408
7.1.5;REFERENCES;408
7.2;Restoringn Spatial Phase Distribution of Complex Optical Fieldsfor Biomedicine Application;409
7.2.1;I. INTRODUCTION;409
7.2.2;II. ALGORITHMS OF THE PHASE DISTRIBUTIONRECONSTRUCTION;409
7.2.3;III. RESULTS;412
7.2.4;IV. CONCLUSION;412
7.2.5;REFERENCES;412
7.3;Development of Digital Holographic Microscope for 3D Sensing of BiologicalSurface Morphology;413
7.3.1;I. INTRODUCTION;413
7.3.2;II. ELABORATION OF OPTICAL SET-UP;413
7.3.3;III. RESULTS AND DISCUSSION;416
7.3.4;IV. CONCLUSIONS;417
7.3.5;REFERENCES;418
7.4;Modeling of IMS Spectra in Medical Diagnostic Purposes;419
7.4.1;I. INTRODUCTION;419
7.4.2;II. MAIN PRINCIPLES AND GENERALSETUP OF IMS;420
7.4.3;III. PHYSICAL MODEL OF IMS SPECTRUM;420
7.4.4;IV. IMS SPECTRUM SIMULATION;421
7.4.5;V. IDENTIFICATION OF PEAKS;421
7.4.6;VI. RESULTS OF IMS SPECTRUM SIMULATION;420
7.4.7;VII. HUMAN BREATH IMS SPECTRASIMULATION;421
7.4.8;VIII. CONCLUSIONS;422
7.4.9;REFERENCES;422
7.5;Features in Infrared Image Processing of Biotissue with Internal Heat Source;424
7.5.1;I. INTRODUCTION;424
7.5.2;II. SPATIAL DISTRIBUTIONS OF TEMPERATUREIN BIOTISSUE WITH AN INTERNAL HEAT SOURCE;424
7.5.3;III. VOLUMETRIC GLOWING OF BIOTISSUE;426
7.5.4;IV. EXAMPLES OF TEMPERATUREMEASUREMENT ERRORS;426
7.5.5;V. ON THE SOLUTIONS TO INVERSE PROBLEMS;427
7.5.6;VI. CONCLUSION;427
7.5.7;REFERENCES;428
7.6;Fluorescent Nanoscale Structures for Selective Medical Diagnostics;429
7.6.1;I. INTRODUCTION;429
7.6.2;II. WRITING THE PAPER;429
7.6.3;III. CONCLUSION;432
7.6.4;REFERENCES;433
7.7;Hepatoprotective Activity of Leaf Extract of Laurus Nobilis L. against CCL4Induced Hepatotoxicity in Rats;434
7.7.1;I. INTRODUCTION;434
7.7.2;II. MATERIALS AND METHODS;434
7.7.3;III. RESULTS AND DISCUSSION;435
7.7.4;REFERENCES;437
7.8;An Automated Inertial Indoor Positioning and Fall Detection System for Elder;439
7.8.1;I. INTRODUCTION;439
7.8.2;II. MATERIALS AND METHODS;440
7.8.3;III. RESULTS;441
7.8.4;IV. CONCLUSIONS;442
7.8.5;REFERENCES;442
7.9;Modelling Potential Distribution in ZnO with Different Thicknessesat GHz Frequencies;443
7.9.1;I. INTRODUCTION;443
7.9.2;II. EXPERIMENT;443
7.9.3;III. RESULTS;446
7.9.4;IV. CONCLUSION;446
7.9.5;V. REFERENCES;446
8;Part VClinical Engineering, Health Informaticsand Cellular and Tissue Engineering;447
8.1;Prophylaxis Monitoring of the State of Human Respiratory Organs;448
8.1.1;I. INTRODUCTION;448
8.1.2;II. MAIN PART;449
8.1.3;III. CONCLUSION;452
8.1.4;REFERENCES;452
8.2;BioR Medication in the Combined Treatment of Chronic Tonsillitis in Children;453
8.2.1;I. INTRODUCTION;453
8.2.2;II. MATERIALS AND METHODS;453
8.2.3;III. DISCUSSION;453
8.2.4;IV. RESULTS;454
8.2.5;V. CONCLUSIONS;455
8.2.6;REFERENCES;455
8.3;Water as a Receiver of Information from Digital Representations of Plant ObjectsSubjected to Thermal Stress Action: 2. Instrumental Testing;456
8.3.1;I. INTRODUCTION;456
8.3.2;II. DATABASE AND METHODS;457
8.3.3;III. RESULTS;457
8.3.4;IV. CONCLUSION;458
8.3.5;REFERENCES;458
8.4;Water as Receiver of Information from Digital Representations of Plant ObjectsSubjected to Thermal Stress Action: 1. Biological Indicator Testing;459
8.4.1;I. INTRODUCTION;459
8.4.2;II. DATABASE AND METHODS;459
8.4.3;III. RESULTS;460
8.4.4;IV. CONCLUSION;462
8.4.5;REFERENCES;462
8.5;SonaRes Platform for Development of Medical Informatics Applications;463
8.5.1;I. INTRODUCTION;463
8.5.2;II. SONARES PLATFORM;463
8.5.3;III. DSS SONARES;464
8.5.4;IV. EMERGENCY-SONARES;464
8.5.5;V. COMPUTER-AIDED TOOLS FOR DIAGNOSTICS AND CLASSIFICATION OF EARLY STAGES OF NON-ALCOHOLICFATTY LIVER DISEASE;465
8.5.6;VI. SONARES.EDU;465
8.5.7;VII. CONCLUSIONS;465
8.5.8;REFERENCES;466
8.6;The Modality of the Regeneration of the Intervertebral Lombar Discin Osteochondrosis;467
8.6.1;I. INTRODUCTION;467
8.6.2;II. DATABASE AND METHODS;468
8.6.3;III. RESULTS;469
8.6.4;IV. CONCLUSION;469
8.6.5;REFERENCES;470
8.7;Middle Ear Monitoring in Children;471
8.7.1;I. INTRODUCTION;471
8.7.2;II. MATERIALS AND METHODS;472
8.7.3;III. RESULTS;472
8.7.4;IV. DISCUSSIONS;473
8.7.5;V. CONCLUSIONS;474
8.7.6;REFERENCES;474
8.8;An Evaluation of the Accuracy and Reproductibility of CephalometricMeasurements Using Two Different Versions of Romexis Software;475
8.8.1;I. INTRODUCTION;475
8.8.2;II. MATERIALS AND METHODS;475
8.8.3;III. RESULTS AND DISCUSSIONS;476
8.8.4;IV. CONCLUSIONS;478
8.8.5;REFERENCES;478
8.9;Using CHAID Algorithm in Low-Risk Metabolic Syndrome Patients;479
8.9.1;I. INTRODUCTION;479
8.9.2;II. STUDY GROUP;479
8.9.3;III. IMPLEMENTATION OF CHAID ALGORITHM;480
8.9.4;IV. USING CHAID ALGORITHM IN LOW-RISKMETABOLIC SYNDROME PATIENTS;480
8.9.5;V. CONCLUSIONS;481
8.9.6;VI. COMPLIANCE WITH ETHICALREQUIREMENTS;482
8.9.7;REFERENCES;482
8.10;Study of Interoceptive Signals Perception in Patients with Panic Disorderand Eminent Respiratory Symptoms;483
8.10.1;I. INTRODUCTION;483
8.10.2;II. SUBJECTS AND METHODS;483
8.10.3;III. RESULTS;484
8.10.4;IV. DISCUSSION;484
8.10.5;V. CONCLUSION;485
8.10.6;REFERENCES;485
8.11;Collective Behavior of Water Molecules in Microtubules;486
8.11.1;I. INTRODUCTION;486
8.11.2;II. QUNTUM MECHANICAL TREATMENTOF BIOLOGICAL SYSTEM;486
8.11.3;III. QUANTUM MECHANICAL FORMALISM OF INTERCATION OF BIOPHOTONSWITH COLLECTIVE H2O MOLECULES;488
8.11.4;IV. CONCLUSIONS;489
8.11.5;REFERENCES;490
8.12;Medical Devices Management Strategy in the Republic of Moldova;491
8.12.1;I. INTRODUCTION;491
8.12.2;II. CURRENT SITUATION DESCRIPTION;492
8.12.3;III. PROBLEMS DEFINITION;492
8.12.4;IV. GENERAL AND SPECIFIC OBJECTIVESOF THE STRATEGY;493
8.12.5;V. CONCLUSIONS;494
8.12.6;REFERENCES;494
8.13;Method of Treatment of Immune Cell Disorder Caused by Ionizing Radiation;495
8.13.1;I. INTRODUCTION;495
8.13.2;II. MATERIALS AND METHODS;495
8.13.3;III. RESULTS AND DISCUSSION;496
8.13.4;IV. CONCLUSIONS;498
8.13.5;REFERENCES;498
9;Part VIBiomedical Engineering Education;499
9.1;Management and Implementation of the TEMPUS IV BME-ENA Projectin the Field of Biomedical Engineering Education;500
9.1.1;I. INTRODUCTION;500
9.1.2;II. BME-ENA PROJECT COORDINATION ANDMANAGEMENT;501
9.1.3;III. BME-ENA PROJECT IMPLEMENTATION;502
9.1.4;IV. BME-ENA PROJECT QUALITY ASSURANCE;503
9.1.5;V. CONCLUSIONS;503
9.1.6;REFERENCES;503
9.2;Application of Computational Phantoms and their 3D Print-outs for Educational Purposes;504
9.2.1;I. INTRODUCTION;504
9.2.2;II. THE APPROACH;504
9.2.3;III. IMPLEMENTATION;505
9.2.4;IV. CONCLUSIONS AND FUTURE WORK;506
9.2.5;REFERENCES;507
9.3;Development of the BME MSc Study Program in Georgiawithin the BME-ENA TEMPUS IV Project;508
9.3.1;I. INTRODUCTION;508
9.3.2;REFERENCES;511
9.4;The Implementation of the BME-ENA Tempus Project in Ukraine;513
9.4.1;I. INTRODUCTION;513
9.4.2;II. SOME SPECIFIC CHARACTERISTICS OF THE BME-ENA PROJECT IMPLEMENTATIONIN UKRAINE;513
9.4.3;III. DEVELOPMENT OF PROGRAMSAND COURSES;514
9.4.4;IV. CONCLUSIONS;515
9.4.5;REFERENCES;516
9.5;Medical Bioengineering Education in Iasi, Romania;517
9.5.1;I. INTRODUCTION;517
9.5.2;II. MOTIVATION OF EDUCATIONIN MBE AND BME;517
9.5.3;III. MBE EDUCATION PROGRAMS AT GRIGORET. POPA UNIVERSITY OF IASI;518
9.5.4;IV. CONCLUSIONS;520
9.5.5;REFERENCES;520
9.6;Design and Content of Biomedical Curriculum for Biomedical EngineeringMaster’s Program in the Republic of Moldova;521
9.6.1;I. INTRODUCTION;521
9.6.2;II. DESIGN AND CONTENT OF BIOMEDICALCURRICULUM;521
9.6.3;III. CONCLUSIONS;523
9.6.4;REFERENCES;523
10;Part VIINuclear and Radiation Safety and Security;524
10.1;Ion Mobility Spectrometer for Rapid Simultaneous Detectionof Positive and Negative Ions;525
10.1.1;I. INTRODUCTION;525
10.1.2;II. DEVELOPMENT;525
10.1.3;III. RESULTS AND DISCUSSION;526
10.1.4;IV. CONCLUSION;528
10.1.5;REFERENCES;529
10.2;Experimental Equipment for Extraction of ELDRS Conversion Model Parametersand its Application for Estimation of Radiation Effects in Bipolar Devices;530
10.2.1;I. INTRODUCTION;530
10.2.2;II. THE FITTING PARAMETER EXTRACTIONTECHNIQUE FIGURES AND TABLES;530
10.2.3;III. STRUCTURE DIAGRAM OF THEMEASURING EQUIPMENT;531
10.2.4;IV. EXPERIMENTAL EXTRACTION OF ELDRS CONVERSION MODEL PARAMETERS FORVOLTAGE COMPARATOR LM111;532
10.2.5;V. CONCLUSIONS;533
10.2.6;REFERENCES;533
10.3;Numerical Estimation of the Radiation Hardness of Bipolar Integrated Circuitsin Various Irradiation Conditions of Space Environment;534
10.3.1;I. INTRODUCTION;534
10.3.2;II. ELDRS CONVERSION MODEL;534
10.3.3;III. CYCLIC TEMPERATURE VARIATION;536
10.3.4;IV. SOLAR FLARE;536
10.3.5;V. CONCLUSIONS;537
10.3.6;REFERENCES;537
10.4;Theoretical Investigations of Nano-sensors for Radiation Processes;538
10.4.1;I. INTRODUCTION;539
10.4.2;II. RATE CONSTANT OF CHARGE TRANSFERPROCESS;539
10.4.3;III. CONCLUSIONS;540
10.4.4;REFERENCES;540
10.5;Portal Monitor for Human Body Alpha-Radioactive Contamination Control;542
10.5.1;I. INTRODUCTION;542
10.5.2;II. METHOD OF THE REMOTEALPHA-PARTICLES DETECTION;542
10.5.3;III. INSTRUMENTS FOR REMOTEALPHA-PARTICLES DETECTION;543
10.5.4;IV. EXPERIMENTAL RESULTS;545
10.5.5;V. CONCLUSIONS;545
10.5.6;REFERENCES;546
10.6;The Circuit Method for Decreasing of Sensitivity to ASET Effect for BipolarOperational Amplifiers;547
10.6.1;I. INTRODUCTION;547
10.6.2;II. THE REDUCTION OF ASET SENSITIVITY OF THE LM124 OP AMP BY USING THE RADIATIONHARDNED CURRENT MIRROR;547
10.6.3;III. MODIFIED CIRCUIT OF LM124 OP 548
10.6.4;IV. CONCLUSIONS;549
10.6.5;REFERENCES;549
10.7;Cyber Security in the Nuclear and Radiological Domain: Case Studyof Republic of Moldova;551
10.7.1;I. INTRODUCTION;551
10.7.2;II. CONTEXT AND MOTIVATION;551
10.7.3;III. NATIONAL LEGISLATION IN CYBER/NUCLEAR DOMAIN;552
10.7.4;IV. CONCLUSIONS;552
10.7.5;REFERENCES;553
10.8;Nuclear Security as an Ongoing International Process;554
10.8.1;I. INTRODUCTION;554
10.8.2;II. NUCLEAR SECURITY, AN EMERGING ISSUE;554
10.8.3;III. THE NUCLEAR SECURITY SUMMITS;555
10.9;Effects of Electromagnetic Field on Human’s Health – A Short Review;557
10.9.1;I. INTRODUCTION;557
10.9.2;II. EMF INTERACTION WITH HUMAN’SORGANISM;557
10.9.3;III. CONCLUSIONS;559
10.9.4;REFERENCES;560
10.10;Methods for the Self Calibration of Ion Mobility Spectrometer;561
10.10.1;I. INTRODUCTION;561
10.10.2;II. CALIBRATION WITH EXPLOSIVE VAPORS;561
10.10.3;III. CALIBRATION USING CORONADISCHARGE;563
10.10.4;IV. CONCLUSIONS;564
10.10.5;REFERENCES;565
11;Author Index;566