Sontea / Tiginyanu | 3rd International Conference on Nanotechnologies and Biomedical Engineering | E-Book | sack.de
E-Book

E-Book, Englisch, Band 55, 573 Seiten, eBook

Reihe: IFMBE Proceedings

Sontea / Tiginyanu 3rd International Conference on Nanotechnologies and Biomedical Engineering

ICNBME-2015, September 23-26, 2015, Chisinau, Republic of Moldova

E-Book, Englisch, Band 55, 573 Seiten, eBook

Reihe: IFMBE Proceedings

ISBN: 978-981-287-736-9
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark



This volume presents the proceedings of the 3rd International Conference on Nanotechnologies and Biomedical Engineering which was held on September 23-26, 2015 in Chisinau, Republic of Moldova.ICNBME-2015 continues the series of International Conferences in the field of nanotechnologies and biomedical engineering. It aims at bringing together scientists and engineers dealing with fundamental and applied research for reporting on the latest theoretical developments and applications involved in the fields. Topics includeNanotechnologies and nanomaterialsPlasmonics and metamaterialsBio-micro/nano technologiesBiomaterialsBiosensors and sensors systemsBiomedical instrumentationBiomedical signal processingBiomedical imaging and image processingMolecular, cellular and tissue engineeringClinical engineering, health technology management and assessment; Health informatics, e-health and telemedicineBiomedical engineering educationNuclear and radiation safety and securityInnovations and technology transfer
Sontea / Tiginyanu 3rd International Conference on Nanotechnologies and Biomedical Engineering jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1;Preface;6
2;Committees;8
3;Table of Contents;11
4;Part I Nanotechnologies and Nanomaterials;20
4.1;Role of Charge-Transfer Complexes in Regulation of Processes Associatedwith Redistribution Electron Density in Biocomposite Systems;21
4.1.1;I. INTRODUCTION;21
4.1.2;II. THEORETICAL MODEL;21
4.1.3;III. RESULTS AND DISCUSSION;22
4.1.4;IV. CONCLUSIONS;24
4.1.5;REFERENCES;25
4.2;Influence of Resonant Optical Phonons on IntersubbandMagnetoabsorption in Nanowires;26
4.2.1;I. INTRODUCTION;26
4.2.2;II. THEORETICAL APPROACH;26
4.2.3;III. RESULTS AND DISCUSSION;28
4.2.4;IV. CONCLUSIONS;30
4.2.5;REFERENCES;30
4.3;Peculiarity of High-Field Galvanomagnetic Effects in Bicrystalsof Bi and Its Alloys with Sb;31
4.3.1;I. INTRODUCTION;31
4.3.2;II. EXPERIMENTAL PROCEDURE;31
4.3.3;III. RESULTS AND DISCUSSION;32
4.3.4;IV. CONCLUSION;34
4.4;Effective Transfer of UV Energy to Red Luminescence in the NanocompositesPolymer/Eu Coordination Compounds;35
4.4.1;I. INTRODUCTION;35
4.4.2;II. PREPARATION TECHNOLOGY ANDEXPERIMENTAL SET-UP;35
4.4.3;III. EXPERIMENTAL RESULTS;36
4.4.4;IV. DISCUSSION OF RESULTS;37
4.4.5;V. CONCLUSION;38
4.5;Transfer of Heat between Electrons and Phonons in Metallic Nanostructures;39
4.5.1;I. INTRODUCTION;39
4.5.2;II. NORMALIZATION AND ELECTRONPHONON COUPLING;40
4.5.3;III. THE HEAT FLUX;41
4.5.4;IV. CONCLUSIONS;42
4.6;Theory of Catalytic Micro- and Nanoengines: From Self-propulsion Mechanismsto Remediation of Polluted Water;43
4.6.1;I. INTRODUCTION;43
4.6.2;III. SELF-PROPELLED MICROMOTORS FORCLEANING POLLUTED WATER;45
4.6.3;IV. CONCLUSIONS;46
4.6.4;REFERENCES;46
4.7;Characterisation of Silicon Nanolayers Deposited by Plasma Enhanced ChemicalVapor Deposition on 3-D ZnO Templates for Hollow Silicon Microstructures;48
4.7.1;I. INTRODUCTION;48
4.7.2;II. EXPERIMENTAL;48
4.7.3;III. RESULTS AND DISCUSSION;49
4.7.4;IV. CONCLUSION;51
4.7.5;REFERENCES;51
4.8;Two-Dimensional Cavity Polaritons under the Influence of the LandauQuantization, Rashba Spin-Orbit Coupling and Zeeman Splitting;53
4.8.1;I. INTRODUCTION;53
4.8.2;II. THE HAMILTONIAN DESCRIBING THE 2DMAGNETOEXCITONS, CAVITY PHOTONS ANDTHEIR INTERACTION;53
4.8.3;III. THE ENERGY SPECTRUM OF THE CAVITYMAGNETOEXCITON-POLARITONS;54
4.8.4;IV. CONCLUSIONS;56
4.9;Detection in the Contacts with HTSC - InSb: Numerical Modelingof the Contact Area Role;58
4.9.1;I. INTRODUCTION;58
4.9.2;II. RESULTS AND DISCUSSION;58
4.9.3;III. CONCLUSIONS;60
4.10;XRD and XPS of Cd2SnO4 Thin Films Obtained by Spray Pyrolysis;61
4.10.1;I. INTRODUCTION;61
4.10.2;II. EXPERIMENTAL;61
4.10.3;III. REZULTS AND DISCUSION;61
4.10.4;IV. CONCLUSION;64
4.10.5;REFERENCES;64
4.11;Superconductivity on the Background of the State of the Spin DensityWave in Anisotropic Systems;65
4.11.1;I. INTRODUCTION;65
4.11.2;II. MATERIAL AND METHODS;65
4.11.3;III. RESULTS AND DISCUSSION;67
4.12;Peculiarities of Seebeck Effect in Strained Bismuth Nanowires;69
4.12.1;I. INTRODUCTION;69
4.12.2;II. RESULTS AND DISCUSSION;70
4.12.3;III. CONCLUSIONS;72
4.12.4;REFERENCES;72
4.13;X-Ray Photoelectronic Spectroscopy of GaN, AlGaN Layers, Grown on Siliconby the Chemical Transport Reactions Method;74
4.13.1;I. INTRODUCTION;74
4.13.2;II. EXPERIMENTAL;75
4.13.3;III. RESULTS AND DISCUSION;75
4.13.4;IV. CONCLUSION;77
4.13.5;REFERENCES;77
4.14;Birefraction in CdP2 Photodiodes;78
4.14.1;I. INTRODUCTION;78
4.14.2;II. EXPERIMENTAL METHODS;78
4.14.3;III. RESULTS;78
4.14.4;IV. CONCLUSIONS;81
4.14.5;REFERENCES;81
4.15;Birefractive Effects in Quantum Wells;82
4.15.1;I. INTRODUCTION;82
4.15.2;II. EXPERIMENTAL METHODS;82
4.15.3;III. RESULTS;82
4.15.4;IV. CONCLUSIONS;85
4.15.5;REFERENCES;85
4.16;Optical Properties of ZnAl2Se4 Crystals;86
4.16.1;I. INTRODUCTION;86
4.16.2;II. EXPERIMENTAL METHODS;86
4.16.3;III. RESULTS;86
4.16.4;IV. CONCLUSIONS;89
4.16.5;REFERENCES;89
4.17;Nanomultilayer As2S3:Mn-Se Systems: Properties and Use as the Recording Media;90
4.17.1;I. INTRODUCTION;90
4.17.2;II. EXPERIMENTAL RESULTS AND DISCUSSION;90
4.17.3;III. CONCLUSIONS;93
4.17.4;REFERENCES;93
4.18;Properties of Carbazole-Based Azopolymer Used in Formation of PhotoinducedSurface Relief Gratings;94
4.18.1;I. INTRODUCTION;94
4.18.2;II. EXPERIMENTAL;94
4.18.3;III. RESULTS;96
4.18.4;IV. CONCLUSIONS;98
4.18.5;REFERENCES;98
4.19;The Impact of Porosification upon Luminescence of HVPE Grown GaNand the Influence of the Porous Layer upon the Quality of the Overgrown GaN Film;99
4.19.1;I. INTRODUCTION;99
4.19.2;II. EXPERIMENTAL;99
4.19.3;III. RESULTS AND DISCUSSIONS;100
4.19.4;IV. CONCLUSIONS;102
4.19.5;REFERENCES;102
4.20;Chronic Toxicity of Silver Nanoparticles;103
4.20.1;I. INTRODUCTION;103
4.20.2;II. MATERIALS AND METHODS;103
4.20.3;III. RESULTS;104
4.20.4;IV. DISCUSSION;105
4.21;Effect of Spin Coating Technique on Mechanical Properties of Silicophosphate ThinFilm Doped by Neodymium;107
4.21.1;I. INTRODUCTION;107
4.21.2;II. EXPERIMENTAL;107
4.21.3;III. RESULTS;107
4.21.4;IV. CONCLUSIONS;110
4.22;Characterization of TiO2 Nanoparticles and ZnO/TiO2 Composite Obtainedby Hydrothermal Method;111
4.22.1;I. INTRODUCTION;111
4.22.2;II. MATERIAL SYNTHESIS;111
4.22.3;III. CHARACTERIZATION;112
4.22.4;IV. CONCLUSION;114
4.23;Fabrication of Bismuth Telluride Wire Thermoelectric Devices;115
4.23.1;I. INTRODUCTION;115
4.23.2;II. BISMUTH TELLURIDE WIRE ARRAYS;115
4.23.3;III. ISOLATING BITE WIRES;116
4.23.4;IV. CONCLUSIONS;118
4.24;Nanolayers with Advanced Properties for Superconducting Spintronics;119
4.24.1;I. NANOSTRUCTURES DEPOSITION ANDCHARACTERIZATION;119
4.24.2;II. TRILAYER STRUCTURES;119
4.24.3;III. SUPERCONDUCTING PROPERTIES OFCU41NI59 /NB/CU41NI59 TRILAYERS;120
4.24.4;IV. FIVE-LAYER SPIN VALUE STRUCTURE;121
4.24.5;V. MAGNETIC PROPERTIES OF FIVE-LAYER STRUCTURE;121
4.24.6;VI. CONCLUSIONS;122
4.25;Application of the Strenghening Nanostructured Coatings Obtainedat Electrodischarge Treatment by Tool Electrodes Manufacturing from Al-Sn Alloy;123
4.25.1;I. INTRODUCTION;123
4.25.2;II. OBTAINING COATINGS USING ESD;123
4.25.3;III. APPLICATION OF TOOL ELECTRODESMADE FROM AL-SN FOR THE RECOVERYOF MATCHING SITES OF ROLLING BEARINGS;126
4.25.4;IV. THE USE OF THE TOOL ELECTRODESFROM AL-SN TO ELIMINATE LEAKS INALUMINIUM TUBES OF HEAT EXCHANGE UNITS;127
4.26;Structural, Optical and Electrical Properties of ZnO: Al Thin Films Synthesizedby Sol-gel Method;129
4.26.1;I. INTRODUCTION;129
4.26.2;II. MATERIAL AND METHODS;129
4.26.3;III. RESULTS AND DISCUSSION;129
4.26.4;IV. CONCLUSIONS;132
4.27;Single Nanowire Nanosensors: A Case Study of the Effects of Metal Doping on ZnO;133
4.27.1;I. INTRODUCTION;133
4.27.2;II. EXPERIMENTAL;133
4.27.3;III. RESULTS AND DISCUSSION;134
4.27.4;IV. CONCLUSIONS;136
4.28;Anisotropic Thermoelectric Generator Made from Single Crystal Bi Microwire;137
4.28.1;I. INTRODUCTION;137
4.28.2;II. SAMPLE AND EXPERIMENT;137
4.28.3;III. RESULTS AND DISCUSSION;138
4.28.4;IV. CONCLUSIONS;140
4.29;Removal of Barrier Oxide in the Anodized Aluminum Oxide Nanotemplates;141
4.29.1;I. INTRODUCTION;141
4.29.2;II. MATERIALS AND METHODS;141
4.29.3;III. RESULTS AND DISSCUSIONS;142
4.29.4;IV. CONCLUSIONS;144
4.30;Cavity Field Suppression via Interference Effects;145
4.30.1;I. INTRODUCTION;145
4.30.2;II. QUANTUM DYNAMICS OF A PUMPED TWOLEVELATOM INSIDE A DRIVEN PHOTONICCRYSTAL MICROCAVITY;145
4.30.3;III. CONCLUSIONS;147
4.31;Slow Relaxation of Magnetization in a Family ofLinear MnIIIMIIIMnIII (M = Fe, Ru, Os) Compounds;149
4.31.1;I. INTRODUCTION;149
4.31.2;II. MODEL;149
4.31.3;III. RESULTS;150
4.31.4;IV. SUMMARY;151
4.32;Slow Magnetic Relaxation in Dysprosium Based Single-Ion Magnets;152
4.32.1;I. INTRODUCTION;152
4.32.2;II. MODEL;152
4.32.3;III. RESULTS;153
4.32.4;IV. SUMMARY;154
4.33;Electric Field Control of Magnetic and Polarizability Propertiesof Trimeric Mixed Valence Clusters;156
4.33.1;I. INTRODUCTION;156
4.33.2;II. THE MODEL;156
4.33.3;III. ANISOTROPY OF POLARIZABILITY;157
4.33.4;IV. FIELD AND TEMPERATURE DEPENDENCEOF THE EFFECTIVE MAGNETIC MOMENT;158
4.33.5;V. CONCLUSIONS;159
4.34;Perspectives of Bulk and Nanosized II-VI Compoundsfor Light-Emission Application;160
4.34.1;I. INTRODUCTION;160
4.34.2;II. RESULTS AND DISCUSSION;160
4.34.3;III. CONCLUSIONS;163
4.34.4;REFERENCES;163
4.35;Spiropyran Based Smart Composites: Memorizing Polymer with Enhanced Molecular Switches;164
4.35.1;I.INTRODUCTION;164
4.35.2;II. EXPERIMENTS;164
4.35.3;III. RESULTS AND DISCUSSION;165
4.35.4;IV. CONCLUSIONS;166
4.36;Sensing Properties of Ultra-Thin TiO2 Nanostructured Films Based Sensors;167
4.36.1;I. INTRODUCTION;167
4.36.2;II. EXPERIMENTAL;167
4.36.3;III. RESULTS;168
4.36.4;IV. CONCLUSIONS;170
4.37;Nanotechnological Application Based on CoFe2O4 Nanoparticlesand Electromagnetic Exposure on Agrotechnical Plant Growth;171
4.37.1;I. INTRODUCTION;171
4.37.2;II. MATERIALS AND METHODS;171
4.37.3;III. RESULTS AND DISCUSSION;172
4.37.4;IV. CONCLUSIONS;174
4.38;Application of Nano-Oxide Films on the Surfaces of Parts Made of Titanium Alloysin Order to Increase Their Corrosion Resistance;175
4.38.1;I. INTRODUCTION;175
4.38.2;II. METHODOLOGY OF EXPERIMENTALINVESTIGATIONS;175
4.38.3;III. RESULTS OF EXPERIMENTALINVESTIGATIONS;176
4.38.4;IV. CONCLUSIONS;177
4.39;Entanglement among Photon and Phonon Degrees of Freedom;178
4.39.1;I. INTRODUCTION;178
4.39.2;II. ANALITICAL MODEL;178
4.39.3;III. RESULTS;179
4.39.4;IV. CONCLUSIONS;180
4.40;Activation Process of GaAs NEA Photocathode and Its Spectral Sensitivity;181
4.40.1;I. INTRODUCTION;181
4.40.2;II. EXPERIMENTAL;181
4.40.3;III. RESULTS AND DISCUSSION;182
4.40.4;IV. SUMMARY;184
4.41;Anticipated Synchronization of Passive Dispersive Reflector Semiconductor Laser;185
4.41.1;i. INTRODUCTION;185
4.41.2;ii. MODEL SKETCH;185
4.41.3;III. NUMERICAL RESULTS;186
4.41.4;IV. CONCLUSIONS;188
4.42;Observation of Electron Spin Relaxation Time in Pnpn Structured GaAs;189
4.42.1;I. INTRODUCTION;189
4.42.2;II. PNPN STRUCTURE;189
4.42.3;III. POLARIZATION RESOLVED PL SPECTRALMEASUREMENTS;190
4.42.4;IV. POLARIZATION AND TIME-RESOLVED PLMEASUREMENTS;191
4.42.5;V. CONCLUSION;191
4.43;Evaluation of Spin Relaxation Time by Polarization- and Time-Resolved Pumpand Probe Measurements;193
4.43.1;I. INTRODUCTION;193
4.43.2;II. CONDITIONS FOR OBSERVING SPINSUPERPOSITION;193
4.43.3;III. PUMP-PROBE (PP) MEASUREMENTS;194
4.43.4;IV. CONCLUSIONS;196
4.44;The Influence of External Cavity Optical Feedback on the Dynamics of QuantumDots Lasers;197
4.44.1;I. INTRODUCTION;197
4.44.2;II. MODEL AND EQUATIONS;197
4.44.3;III. NUMERICAL RESULTS AND DISCUSSIONS;198
4.44.4;IV. CONCLUSIONS;200
4.45;PbTe Nanoparticles Obtaining and Studies of Their Electrical Properties;201
4.45.1;I. INTRODUCTION;201
4.45.2;II. EXPERIMENTAL REZULTS AND DISCUSSION;201
4.45.3;III. CONCLUSIONS;203
4.46;Plasmonic Effects for Enhanced Optical Mixing in View of THz Signal Generation;204
4.46.1;I. INTRODUCTORY REMARKS;204
4.46.2;II. DESIGN OF OTHER TYPICAL GRAPHENETHZ SOURCES;204
4.46.3;III. FABRICATION TECHNOLOGY;204
4.46.4;IV. PLASMONICS AND GRAPHENE FOR THZGENERATION BY OPTICAL MIXING;205
4.46.5;V. CONCLUSION;205
4.47;Features of Nanotemplates Manufacturing on the II-VI Compound Substrates;206
4.47.1;I. INTRODUCTION;206
4.47.2;II. EXPERIMENTAL TECHNIQUE;206
4.47.3;III. RESULTS AND DISCUSSION;206
4.47.4;IV. CONCLUSIONS;209
4.48;Excitonic Luminescence, X-ray Analysis and Local Band Structureof Chlorine Intercalated 2H- and 3R-MoS2 Polytypes;210
4.48.1;I. INTRODUCTION;210
4.48.2;II. EXPERIMENTAL PROCEDURE;210
4.48.3;III. THEORETICAL CALCULATIONS;211
4.48.4;IV. RESULTS AND DISCUSSIONS;211
4.48.5;V. CONCLUSIONS;213
4.49;Exciton-polariton Laser;214
4.49.1;I. INTRODUCTION;214
4.49.2;II. A SHORT REVIEW RELATED TO THE BEC INA SYSTEM OF 2D CAVITY POLARITONS INSEMICONDUCTOR NANOSTRUCTURES;214
4.49.3;III. CONCLUSIONS;217
4.50;Preparation of Fine Bentonite Suspensions in Cavitation Fields;219
4.50.1;I. INTRODUCTION;219
4.50.2;II. EXPERIMENTAL;219
4.50.3;III. RESULTS AND DISCUSSION;220
4.50.4;IV. CONCLUSIONS;222
4.50.5;REFERENCES;222
4.51;Influence of Fe Catalyst Morphology on the Growing of Carbon Nanotubes;223
4.51.1;I. INTRODUCTION;223
4.51.2;II. EXPERIMENTAL;223
4.51.3;III. RESULTS AND DISCUSSION;224
4.51.4;IV. CONCLUSIONS;225
4.51.5;REFERENCES;226
4.52;Investigation of the Generalized Anderson Impurity Model;227
4.52.1;I. INTRODUCTION;227
4.52.2;II. CANONIC TRANSFORMATION;227
4.52.3;III. GREEN’S FUNCTIONS;229
4.52.4;IV. CONCLUSIONS;230
4.52.5;REFERENCES;230
4.53;Thermoelectric Properties of Bi1-xSbx Alloys, Wires and Foils;231
4.53.1;I. INTRODUCTION;231
4.53.2;II. SAMPLES AND EXPERIMENT;231
4.53.3;III. RESULTS AND DISCUSSIONS;232
4.53.4;IV. CONCLUSIONS;235
4.53.5;REFERENCES;234
4.54;Prospect Nanostructured Material for Thermoelectric Sensors of Infrared Radiations;236
4.54.1;I. INTRODUCTION;236
4.54.2;II. HIGH-CONDUCTIVE COMPLEX TTT(TCNQ)2;237
4.54.3;III. TRANSPORT PROPERTIES;237
4.54.4;IV. RESULTS AND DISCUSSIIONS;238
4.54.5;V. CONCLUSIONS;239
4.54.6;REFERENCES;239
4.55;The Generalization of Scientific and Educational Materials on Nanoelectronics;240
4.55.1;I. INTRODUCTION;240
4.55.2;II. BASICALLY INFORMATION;240
4.55.3;III. CONCLUSIONS;242
4.55.4;REFERENCES;243
4.56;Study of a New Colloidal Composite: Polymer-Magnetite Particles/LyotropicLiquid Crystal;244
4.56.1;I. INTRODUCTION;244
4.56.2;ii. EXPERIMENTAL PROCEDURES;244
4.56.3;III. RESULTS AND DISCUSSIONS;246
4.56.4;IV. CONCLUSIONS;247
4.56.5;REFERENCES;247
4.57;Polaron Theory of the Emission Current in a Cathode-Adsorbed Nanofilm Systemat the Initial Stage of a High-Voltage Gas Discharge;248
4.57.1;I. INTRODUCTION;248
4.57.2;II. ORIGINAL FORMULA FOR THE NORDHEIMFUNCTION;248
4.57.3;III. DISCUSSION;251
4.57.4;REFERENCES;251
4.58;Zero Frequency Spectrum of 3-D Metal Photonic Crystals Obtainedby the 3-D Kronig–Penney Model;252
4.58.1;I. INTRODUCTION;252
4.58.2;II. THE EQUATION FOR METALLICNANOSPHERES;252
4.58.3;III. A MODEL PROBLEM FOR A SIMPLEST-TYPENANOSPHERE;253
4.58.4;IV. ZERO FREQUENCY SPECTRUM OF 3DMETAL PHOTONIC CRYSTALS;254
4.58.5;V. CONCLUSIONS;255
4.58.6;REFERENCES;255
4.59;Conditions for Plasma Obtaining in the Gaseous Media and Its Applicationin Nanotechnology;256
4.59.1;I. INTRODUCTION;256
4.59.2;II. THEORETICAL PREMISES ON PLASMAOBTAINING IN THE GASEOUS MEDIA;257
4.59.3;III. METHODOLOGY OF EXPERIMENTALINVESTIGATIONS;259
4.59.4;IV. RESULTS OF EXPERIMENTALINVESTIGATIONS;259
4.59.5;V. CONCLUSIONS;260
4.59.6;REFERENCES;260
5;Bio-Nanotechnologies and Biomaterials;261
5.1;Quantum Information Processes in Protein Microtubules of Brain Neurons;262
5.1.1;I. INTRODUCTION;262
5.1.2;II. FLUCTUATION FUNCTION OF PROTEINMICROTUBULES;263
5.1.3;III. QUANTUM ENTANGLEMENT AND NON-LOCAL MODELS OF QUANTUM INFORMATION PROCESSES IN MICROTUBULESOF BRAIN NEURONS;265
5.1.4;IV. CONCLUSIONS;265
5.1.5;REFERENCES;265
5.2;Functional Ecofriendly Coatings for Marine Applications;267
5.2.1;I. INTRODUCTION;267
5.2.2;II. MATERIALS AND METHODS;268
5.2.3;III. RESULTS;268
5.2.4;IV. CONCLUSION;269
5.2.5;REFERENCES;270
5.3;New Opportunities For Biomedicine;271
5.3.1;I. INTRODUCTION;271
5.3.2;II. GENERAL CONCEPTS OF SPIN ANDORBITAL MOMENTS;272
5.3.3;III. MECHANISM OF SPINAND ORBITAL MOMENTS;272
5.3.4;IV. RESULTS OF EXPERIMENTAL MODULATIONFOR GENERATED SPIN FLOWS;274
5.3.5;CONCLUSION;275
5.3.6;REFERENCES;275
5.4;New Perspective for Biomedical Productions: Application of Cast AmorphousMicrowire for Electromagnetic Absorption;276
5.4.1;I. INTRODUCTION;276
5.4.2;II. DATABASE AND METHODS;277
5.4.3;III. RESULTS;278
5.4.4;IV. CONCLUSIONS;279
5.4.5;REFERENCES;280
5.5;Assessment of the Antimicrobial Activity of Polymer Materials with AddedNanosilica Modified by Silver Compounds;281
5.5.1;I. INTRODUCTION;282
5.5.2;II. MATERIALS AND METHODS;282
5.5.3;III. RESULTS;282
5.5.4;IV. CONCLUSION;283
5.5.5;V. FUNDING;283
5.5.6;REFERENCES;283
5.6;Antibacterial Properties of the Nanoparticles with the Zinc Sulfide Quantum Dots;284
5.6.1;I. INTRODUCTION;284
5.6.2;II. DATABASE AND METHODS;285
5.6.3;III. RESULTS;285
5.6.4;IV. CONCLUSIONS;286
5.6.5;REFERENCES;287
5.7;Influence of Dispersed Solutions of Copper, Silver, Bismuth and Zinc OxideNanoparticles on Growth and Catalase Activity of Penicillium Funiculosum;288
5.7.1;I. INTRODUCTION;288
5.7.2;II. DATABASE AND METHODS;289
5.7.3;III. RESULTS;290
5.7.4;IV. CONCLUSION;290
5.7.5;REFERENCES;291
5.8;Effect of Aqueous Dispersions with NPAg, NPCu, NPBi, and ZnNO, Millimeter-Wave Radiation, and Weak Magnetic Fields on the Germination of Triticale andWheat Seeds under the Action of a Pathogenic Fungus and Low Temperatures;292
5.8.1;I. INTRODUCTION;292
5.8.2;II. DATABASE AND METHODS;292
5.8.3;III. RESULTS;293
5.8.4;IV. CONCLUSION;295
5.8.5;REFERENCES;296
5.9;Theoretical Treatment of Millimeter and Terahertz Radiation Actionon Biological Media;297
5.9.1;I. INTRODUCTION;297
5.9.2;II. MODEL HAMILTONIAN AND EQUATIONOF MOTIONS;297
5.9.3;III. STEADY STATE, DIELECTRIC FUNCTIONSAND THEIR PROPERTIES;298
5.9.4;IV. NUMERICAL RESULTS;299
5.9.5;V. CONCLUSIONS;300
5.10;Fabrication MEMS Platform for Sensors Applications by Laser Micro Engraving;302
5.10.1;I. INTRODUCTION;302
5.10.2;II. EXPERIMENT;303
5.10.3;III. RESULTS AND DISCUSSION;303
5.10.4;IV. CONCLUSIONS;305
5.10.5;REFERENCES;304
5.11;A Novel Bioactive Compound of Palladium(II) with Mercaptoethanol;306
5.11.1;I. INTRODUCTION;306
5.11.2;II. RESULTS AND ANALYSIS;306
5.11.3;III. CONCLUSIONS;308
5.11.4;REFERENCES;308
5.12;Copper-Containing Polyoxometalates: Syntheses and Anticancer Activityagainst the SH-SY5Y Human Neuroblastoma Cell Line;309
5.12.1;I. INTRODUCTION;309
5.12.2;II. MATERIALS AND METHODS;309
5.12.3;III. RESULTS AND DISCUSSION;311
5.12.4;IV. CONCLUSIONS;313
5.12.5;REFERENCES;313
5.13;Genotoxicity of Nanoparticulate Zinc Ferrite – Possible Application in PlantBiotechnology;314
5.13.1;I. INTRODUCTION;314
5.13.2;II. MATERIALS AND METHODS;314
5.13.3;III. RESULTS AND DISCUSSION;315
5.13.4;IV. CONCLUSIONS;317
5.13.5;REFERENCES;317
5.14;Enhancement of Antioxidant and Antibacterial Activities by Immobilization of Natural Bactericide into Hybrid Supra-molecular Chitosan Bio-composite Gel;318
5.14.1;I. INTRODUCTION;318
5.14.2;II. MATERIALS AND METHODS;318
5.14.3;III. RESULTS AND DISCUSSIONS;318
5.14.4;IV. CONCLUSIONS;318
5.15;Antimicrobial Reagents as Functional Finishing for Textiles Intendedfor Biomedical Applications. II. Metals and Metallic Compounds: Silver;322
5.15.1;I. INTRODUCTION;322
5.15.2;II. SILVER FORMULATIONS;322
5.15.3;III. MECHANISM OF BIOCIDE ACTION;323
5.15.4;IV. AG-FUNCTIONALIYED TEXTILES FORBIOMEDICAL APPLICATIONS;323
5.15.5;V. CONCLUSIONS;324
5.15.6;REFERENCES;325
5.16;Antimicrobial Reagents as Functional Finishing for Textiles Intendedfor Biomedical Applications. III. Other Metals and Metallic Compounds;326
5.16.1;I. INTRODUCTION;326
5.16.2;II. FORMULATIONS AND MECHANISMOF ACTION;326
5.16.3;III. TEXTILE FINISHING APPROACHES;329
5.16.4;IV. CONCLUSIONS;330
5.16.5;REFERENCES;330
5.17;Biological Evaluation of Slip Casting Hydroxyapatite Intended for Cranioplasty;332
5.17.1;I. INTRODUCTION;332
5.17.2;II. MATERIALS AND METHODS;332
5.17.3;III. RESULTS AND DISCUSSIONS;333
5.17.4;IV. CONCLUSIONS;335
5.17.5;REFERENCES;335
5.18;Nanofibers for Tissue Engineering and Regenerative Medicine;336
5.18.1;I. INTRODUCTION;336
5.18.2;II. POLY (?-CAPROLACTONE);336
5.18.3;III. ELECTROSPINNING;336
5.18.4;IV. ELECTROSPUN PCL NANOFIBERS;337
5.18.5;V. CONCLUSION;338
5.18.6;REFERENCES;339
5.19;Biocompatible SPIONs with Superoxid Dismutase/Catalase Immobilizedfor Cardiovascular Applications;340
5.19.1;I. INTRODUCTION;341
5.19.2;II. MATERIALS AND METHODS;341
5.19.3;III. RESULTS AND DISCUSSIONS;341
5.19.4;IV. CONCLUSIONS;343
5.19.5;REFERENCES;343
6;Part IIIBiomedical Instrumentation and Biosensors;344
6.1;Multilevel Signal Processing for Biomedical Nanodevices;345
6.1.1;I. INTRODUCTION;345
6.1.2;II. MANAGEMENT OF DISEASES;345
6.1.3;III. UBIQUITOUS MEDICAL SENSORNETWORKS;347
6.1.4;IV. CONCLUSIONS;347
6.1.5;REFERENCES;347
6.2;Transmission of Resistance Sensor Signals over Multi-wire Line with Losses;348
6.2.1;I. INTRODUCTION;348
6.2.2;II. STATEMENT OF THE PROBLEM;348
6.2.3;III. BALANCED MULTI-PORT CIRCUITS;348
6.2.4;IV. PROJECTIVE COORDINATES OF THEOUTPUT;349
6.2.5;V. PROJECTIVE COORDINATES OF THE INPUT;351
6.2.6;VI. CONCLUSIONS;351
6.2.7;REFERENCES;351
6.3;Projective Geometry Invariants of Human Body and Multi-port Electrical Circuits;352
6.3.1;I. INTRODUCTION;352
6.3.2;II. SOME FACTS ABOUT PROJECTIVETRANSFORMATION;352
6.3.3;III. PROJECTIVE TRANSFORMATIONS OF ANELECTRICAL NETWORK FOR LINES AND PLANES;353
6.3.4;IV. PROJECTIVE SPACE OF A MULTI-PORTNETWORK;355
6.3.5;V. CONCLUSIONS;355
6.3.6;REFERENCES;355
6.4;UV Effect on NO2 Sensing Properties of Nanocrystalline In2O3;356
6.4.1;I. INTRODUCTION;356
6.4.2;II. DATABASE AND METHODS;356
6.4.3;III. RESULTS;357
6.4.4;IV. CONCLUSION;359
6.4.5;REFERENCES;360
6.5;Sensitivity Evaluation of the Nanostructure-Enhanced BAW Mass Sensor;361
6.5.1;I. INTRODUCTION;361
6.5.2;II. SENSING LAYER PARAMETERSEXTRACTION;361
6.5.3;III. MODEL CONSIDERATION FOR BAWSENSOR;362
6.5.4;IV. CONCLUSIONS;364
6.5.5;REFERENCES;364
6.6;Effect of Dopant on Selectivity of CuO Nanostructured Films – Based Sensors;365
6.6.1;I. INTRODUCTION;365
6.6.2;II. EXPERIMENTAL;365
6.6.3;III. RESULTS AND DISCUSSION;365
6.6.4;IV. CONCLUSIONS;368
6.6.5;REFERENCES;368
6.7;Photocatalytic Applications of Doped Zinc Oxide Porous Films Grownby Magnetron Sputtering;369
6.7.1;I. INTRODUCTION;369
6.7.2;II. EXPERIMENTAL;369
6.7.3;III. RESULTS;370
6.7.4;IV. CONCLUSIONS;372
6.7.5;REFERENCES;372
6.8;A DVG003 Medical Device for Millimeter Wave Therapy;373
6.8.1;I. INTRODUCTION;373
6.8.2;II. OVERVIEW;373
6.8.3;III. DESCRIPTION OF PATENTED SOLUTIONS;373
6.8.4;IV. DESIGN DESCRIPTION;375
6.8.5;REFERENCES;376
6.9;Hydrogen Gas Sensor Based on Nanograined Pd/?-MoO3 Belts;377
6.9.1;I. INTRODUCTION;377
6.9.2;II. EXPERIMENTAL;378
6.9.3;III. RESULTS;379
6.9.4;IV. CONCLUSIONS;380
6.9.5;REFERENCES;380
6.10;Hypothermia Device Used in Medicine;381
6.10.1;I. INTRODUCTION;381
6.10.2;II. EXPERIMENT;381
6.10.3;III. FUZZY ALGORITHM;382
6.10.4;IV. CONSTRUCTION;383
6.10.5;V. CIRCUITS;384
6.10.6;VI. CONCLUSION;385
6.10.7;REFERENCES;385
6.11;Accuracy Analysis of Measurements in Electrochemical Biosensing;386
6.11.1;I. INTRODUCTION;386
6.11.2;II. MATERIAL AND METHODS;386
6.11.3;III. RESULTS, DISCUSSION;387
6.11.4;IV. CONCLUSIONS;389
6.11.5;REFERENCES;389
6.12;Electronic Circuits for Graphene-Based Biosensor;390
6.12.1;I. INTRODUCTION;390
6.12.2;II. DEVELOPEMENT OF BIOSENSINGELECTRODE;390
6.12.3;III. TWO CONCEPTS;391
6.12.4;IV. COMPARISON OF BOTH SYSTEMS IN EIS MEASUREMENTS;393
6.12.5;V. CONCLUSIONS;393
6.12.6;REFERENCES;393
6.13;Pulsatile Mechanical Heart Assist Device;394
6.13.1;I. INTRODUCTION;394
6.13.2;II. MATERIALS AND METHODS;394
6.13.3;III. RESULTS;395
6.13.4;IV. DISCUSSIONS;396
6.13.5;V. CONCLUSIONS;397
6.13.6;REFERENCES;397
6.14;Impedance Characterization of Gas Sensitive S-Te Based QuaternaryChalcogenides;398
6.14.1;I. INTRODUCTION;398
6.14.2;II. MATERIALS AND METHODS;398
6.14.3;III. RESULTS;399
6.14.4;IV. DISCUSSION;403
6.14.5;V. CONCLUSIONS;403
6.14.6;REFERENCES;403
7;Part IVBiomedical Signal and Image Processing;405
7.1;Automated Morphometry of Neutrophilic Granulocytes – A Simple and ReliableMethod of Assessment of the Wound Process Activity;406
7.1.1;I. INTRODUCTION;406
7.1.2;ii. MATERIALS AND METHODS;406
7.1.3;III. RESULTS;407
7.1.4;IV. CONCLUSION;408
7.1.5;REFERENCES;408
7.2;Restoringn Spatial Phase Distribution of Complex Optical Fieldsfor Biomedicine Application;409
7.2.1;I. INTRODUCTION;409
7.2.2;II. ALGORITHMS OF THE PHASE DISTRIBUTIONRECONSTRUCTION;409
7.2.3;III. RESULTS;412
7.2.4;IV. CONCLUSION;412
7.2.5;REFERENCES;412
7.3;Development of Digital Holographic Microscope for 3D Sensing of BiologicalSurface Morphology;413
7.3.1;I. INTRODUCTION;413
7.3.2;II. ELABORATION OF OPTICAL SET-UP;413
7.3.3;III. RESULTS AND DISCUSSION;416
7.3.4;IV. CONCLUSIONS;417
7.3.5;REFERENCES;418
7.4;Modeling of IMS Spectra in Medical Diagnostic Purposes;419
7.4.1;I. INTRODUCTION;419
7.4.2;II. MAIN PRINCIPLES AND GENERALSETUP OF IMS;420
7.4.3;III. PHYSICAL MODEL OF IMS SPECTRUM;420
7.4.4;IV. IMS SPECTRUM SIMULATION;421
7.4.5;V. IDENTIFICATION OF PEAKS;421
7.4.6;VI. RESULTS OF IMS SPECTRUM SIMULATION;420
7.4.7;VII. HUMAN BREATH IMS SPECTRASIMULATION;421
7.4.8;VIII. CONCLUSIONS;422
7.4.9;REFERENCES;422
7.5;Features in Infrared Image Processing of Biotissue with Internal Heat Source;424
7.5.1;I. INTRODUCTION;424
7.5.2;II. SPATIAL DISTRIBUTIONS OF TEMPERATUREIN BIOTISSUE WITH AN INTERNAL HEAT SOURCE;424
7.5.3;III. VOLUMETRIC GLOWING OF BIOTISSUE;426
7.5.4;IV. EXAMPLES OF TEMPERATUREMEASUREMENT ERRORS;426
7.5.5;V. ON THE SOLUTIONS TO INVERSE PROBLEMS;427
7.5.6;VI. CONCLUSION;427
7.5.7;REFERENCES;428
7.6;Fluorescent Nanoscale Structures for Selective Medical Diagnostics;429
7.6.1;I. INTRODUCTION;429
7.6.2;II. WRITING THE PAPER;429
7.6.3;III. CONCLUSION;432
7.6.4;REFERENCES;433
7.7;Hepatoprotective Activity of Leaf Extract of Laurus Nobilis L. against CCL4Induced Hepatotoxicity in Rats;434
7.7.1;I. INTRODUCTION;434
7.7.2;II. MATERIALS AND METHODS;434
7.7.3;III. RESULTS AND DISCUSSION;435
7.7.4;REFERENCES;437
7.8;An Automated Inertial Indoor Positioning and Fall Detection System for Elder;439
7.8.1;I. INTRODUCTION;439
7.8.2;II. MATERIALS AND METHODS;440
7.8.3;III. RESULTS;441
7.8.4;IV. CONCLUSIONS;442
7.8.5;REFERENCES;442
7.9;Modelling Potential Distribution in ZnO with Different Thicknessesat GHz Frequencies;443
7.9.1;I. INTRODUCTION;443
7.9.2;II. EXPERIMENT;443
7.9.3;III. RESULTS;446
7.9.4;IV. CONCLUSION;446
7.9.5;V. REFERENCES;446
8;Part VClinical Engineering, Health Informaticsand Cellular and Tissue Engineering;447
8.1;Prophylaxis Monitoring of the State of Human Respiratory Organs;448
8.1.1;I. INTRODUCTION;448
8.1.2;II. MAIN PART;449
8.1.3;III. CONCLUSION;452
8.1.4;REFERENCES;452
8.2;BioR Medication in the Combined Treatment of Chronic Tonsillitis in Children;453
8.2.1;I. INTRODUCTION;453
8.2.2;II. MATERIALS AND METHODS;453
8.2.3;III. DISCUSSION;453
8.2.4;IV. RESULTS;454
8.2.5;V. CONCLUSIONS;455
8.2.6;REFERENCES;455
8.3;Water as a Receiver of Information from Digital Representations of Plant ObjectsSubjected to Thermal Stress Action: 2. Instrumental Testing;456
8.3.1;I. INTRODUCTION;456
8.3.2;II. DATABASE AND METHODS;457
8.3.3;III. RESULTS;457
8.3.4;IV. CONCLUSION;458
8.3.5;REFERENCES;458
8.4;Water as Receiver of Information from Digital Representations of Plant ObjectsSubjected to Thermal Stress Action: 1. Biological Indicator Testing;459
8.4.1;I. INTRODUCTION;459
8.4.2;II. DATABASE AND METHODS;459
8.4.3;III. RESULTS;460
8.4.4;IV. CONCLUSION;462
8.4.5;REFERENCES;462
8.5;SonaRes Platform for Development of Medical Informatics Applications;463
8.5.1;I. INTRODUCTION;463
8.5.2;II. SONARES PLATFORM;463
8.5.3;III. DSS SONARES;464
8.5.4;IV. EMERGENCY-SONARES;464
8.5.5;V. COMPUTER-AIDED TOOLS FOR DIAGNOSTICS AND CLASSIFICATION OF EARLY STAGES OF NON-ALCOHOLICFATTY LIVER DISEASE;465
8.5.6;VI. SONARES.EDU;465
8.5.7;VII. CONCLUSIONS;465
8.5.8;REFERENCES;466
8.6;The Modality of the Regeneration of the Intervertebral Lombar Discin Osteochondrosis;467
8.6.1;I. INTRODUCTION;467
8.6.2;II. DATABASE AND METHODS;468
8.6.3;III. RESULTS;469
8.6.4;IV. CONCLUSION;469
8.6.5;REFERENCES;470
8.7;Middle Ear Monitoring in Children;471
8.7.1;I. INTRODUCTION;471
8.7.2;II. MATERIALS AND METHODS;472
8.7.3;III. RESULTS;472
8.7.4;IV. DISCUSSIONS;473
8.7.5;V. CONCLUSIONS;474
8.7.6;REFERENCES;474
8.8;An Evaluation of the Accuracy and Reproductibility of CephalometricMeasurements Using Two Different Versions of Romexis Software;475
8.8.1;I. INTRODUCTION;475
8.8.2;II. MATERIALS AND METHODS;475
8.8.3;III. RESULTS AND DISCUSSIONS;476
8.8.4;IV. CONCLUSIONS;478
8.8.5;REFERENCES;478
8.9;Using CHAID Algorithm in Low-Risk Metabolic Syndrome Patients;479
8.9.1;I. INTRODUCTION;479
8.9.2;II. STUDY GROUP;479
8.9.3;III. IMPLEMENTATION OF CHAID ALGORITHM;480
8.9.4;IV. USING CHAID ALGORITHM IN LOW-RISKMETABOLIC SYNDROME PATIENTS;480
8.9.5;V. CONCLUSIONS;481
8.9.6;VI. COMPLIANCE WITH ETHICALREQUIREMENTS;482
8.9.7;REFERENCES;482
8.10;Study of Interoceptive Signals Perception in Patients with Panic Disorderand Eminent Respiratory Symptoms;483
8.10.1;I. INTRODUCTION;483
8.10.2;II. SUBJECTS AND METHODS;483
8.10.3;III. RESULTS;484
8.10.4;IV. DISCUSSION;484
8.10.5;V. CONCLUSION;485
8.10.6;REFERENCES;485
8.11;Collective Behavior of Water Molecules in Microtubules;486
8.11.1;I. INTRODUCTION;486
8.11.2;II. QUNTUM MECHANICAL TREATMENTOF BIOLOGICAL SYSTEM;486
8.11.3;III. QUANTUM MECHANICAL FORMALISM OF INTERCATION OF BIOPHOTONSWITH COLLECTIVE H2O MOLECULES;488
8.11.4;IV. CONCLUSIONS;489
8.11.5;REFERENCES;490
8.12;Medical Devices Management Strategy in the Republic of Moldova;491
8.12.1;I. INTRODUCTION;491
8.12.2;II. CURRENT SITUATION DESCRIPTION;492
8.12.3;III. PROBLEMS DEFINITION;492
8.12.4;IV. GENERAL AND SPECIFIC OBJECTIVESOF THE STRATEGY;493
8.12.5;V. CONCLUSIONS;494
8.12.6;REFERENCES;494
8.13;Method of Treatment of Immune Cell Disorder Caused by Ionizing Radiation;495
8.13.1;I. INTRODUCTION;495
8.13.2;II. MATERIALS AND METHODS;495
8.13.3;III. RESULTS AND DISCUSSION;496
8.13.4;IV. CONCLUSIONS;498
8.13.5;REFERENCES;498
9;Part VIBiomedical Engineering Education;499
9.1;Management and Implementation of the TEMPUS IV BME-ENA Projectin the Field of Biomedical Engineering Education;500
9.1.1;I. INTRODUCTION;500
9.1.2;II. BME-ENA PROJECT COORDINATION ANDMANAGEMENT;501
9.1.3;III. BME-ENA PROJECT IMPLEMENTATION;502
9.1.4;IV. BME-ENA PROJECT QUALITY ASSURANCE;503
9.1.5;V. CONCLUSIONS;503
9.1.6;REFERENCES;503
9.2;Application of Computational Phantoms and their 3D Print-outs for Educational Purposes;504
9.2.1;I. INTRODUCTION;504
9.2.2;II. THE APPROACH;504
9.2.3;III. IMPLEMENTATION;505
9.2.4;IV. CONCLUSIONS AND FUTURE WORK;506
9.2.5;REFERENCES;507
9.3;Development of the BME MSc Study Program in Georgiawithin the BME-ENA TEMPUS IV Project;508
9.3.1;I. INTRODUCTION;508
9.3.2;REFERENCES;511
9.4;The Implementation of the BME-ENA Tempus Project in Ukraine;513
9.4.1;I. INTRODUCTION;513
9.4.2;II. SOME SPECIFIC CHARACTERISTICS OF THE BME-ENA PROJECT IMPLEMENTATIONIN UKRAINE;513
9.4.3;III. DEVELOPMENT OF PROGRAMSAND COURSES;514
9.4.4;IV. CONCLUSIONS;515
9.4.5;REFERENCES;516
9.5;Medical Bioengineering Education in Iasi, Romania;517
9.5.1;I. INTRODUCTION;517
9.5.2;II. MOTIVATION OF EDUCATIONIN MBE AND BME;517
9.5.3;III. MBE EDUCATION PROGRAMS AT GRIGORET. POPA UNIVERSITY OF IASI;518
9.5.4;IV. CONCLUSIONS;520
9.5.5;REFERENCES;520
9.6;Design and Content of Biomedical Curriculum for Biomedical EngineeringMaster’s Program in the Republic of Moldova;521
9.6.1;I. INTRODUCTION;521
9.6.2;II. DESIGN AND CONTENT OF BIOMEDICALCURRICULUM;521
9.6.3;III. CONCLUSIONS;523
9.6.4;REFERENCES;523
10;Part VIINuclear and Radiation Safety and Security;524
10.1;Ion Mobility Spectrometer for Rapid Simultaneous Detectionof Positive and Negative Ions;525
10.1.1;I. INTRODUCTION;525
10.1.2;II. DEVELOPMENT;525
10.1.3;III. RESULTS AND DISCUSSION;526
10.1.4;IV. CONCLUSION;528
10.1.5;REFERENCES;529
10.2;Experimental Equipment for Extraction of ELDRS Conversion Model Parametersand its Application for Estimation of Radiation Effects in Bipolar Devices;530
10.2.1;I. INTRODUCTION;530
10.2.2;II. THE FITTING PARAMETER EXTRACTIONTECHNIQUE FIGURES AND TABLES;530
10.2.3;III. STRUCTURE DIAGRAM OF THEMEASURING EQUIPMENT;531
10.2.4;IV. EXPERIMENTAL EXTRACTION OF ELDRS CONVERSION MODEL PARAMETERS FORVOLTAGE COMPARATOR LM111;532
10.2.5;V. CONCLUSIONS;533
10.2.6;REFERENCES;533
10.3;Numerical Estimation of the Radiation Hardness of Bipolar Integrated Circuitsin Various Irradiation Conditions of Space Environment;534
10.3.1;I. INTRODUCTION;534
10.3.2;II. ELDRS CONVERSION MODEL;534
10.3.3;III. CYCLIC TEMPERATURE VARIATION;536
10.3.4;IV. SOLAR FLARE;536
10.3.5;V. CONCLUSIONS;537
10.3.6;REFERENCES;537
10.4;Theoretical Investigations of Nano-sensors for Radiation Processes;538
10.4.1;I. INTRODUCTION;539
10.4.2;II. RATE CONSTANT OF CHARGE TRANSFERPROCESS;539
10.4.3;III. CONCLUSIONS;540
10.4.4;REFERENCES;540
10.5;Portal Monitor for Human Body Alpha-Radioactive Contamination Control;542
10.5.1;I. INTRODUCTION;542
10.5.2;II. METHOD OF THE REMOTEALPHA-PARTICLES DETECTION;542
10.5.3;III. INSTRUMENTS FOR REMOTEALPHA-PARTICLES DETECTION;543
10.5.4;IV. EXPERIMENTAL RESULTS;545
10.5.5;V. CONCLUSIONS;545
10.5.6;REFERENCES;546
10.6;The Circuit Method for Decreasing of Sensitivity to ASET Effect for BipolarOperational Amplifiers;547
10.6.1;I. INTRODUCTION;547
10.6.2;II. THE REDUCTION OF ASET SENSITIVITY OF THE LM124 OP AMP BY USING THE RADIATIONHARDNED CURRENT MIRROR;547
10.6.3;III. MODIFIED CIRCUIT OF LM124 OP 548
10.6.4;IV. CONCLUSIONS;549
10.6.5;REFERENCES;549
10.7;Cyber Security in the Nuclear and Radiological Domain: Case Studyof Republic of Moldova;551
10.7.1;I. INTRODUCTION;551
10.7.2;II. CONTEXT AND MOTIVATION;551
10.7.3;III. NATIONAL LEGISLATION IN CYBER/NUCLEAR DOMAIN;552
10.7.4;IV. CONCLUSIONS;552
10.7.5;REFERENCES;553
10.8;Nuclear Security as an Ongoing International Process;554
10.8.1;I. INTRODUCTION;554
10.8.2;II. NUCLEAR SECURITY, AN EMERGING ISSUE;554
10.8.3;III. THE NUCLEAR SECURITY SUMMITS;555
10.9;Effects of Electromagnetic Field on Human’s Health – A Short Review;557
10.9.1;I. INTRODUCTION;557
10.9.2;II. EMF INTERACTION WITH HUMAN’SORGANISM;557
10.9.3;III. CONCLUSIONS;559
10.9.4;REFERENCES;560
10.10;Methods for the Self Calibration of Ion Mobility Spectrometer;561
10.10.1;I. INTRODUCTION;561
10.10.2;II. CALIBRATION WITH EXPLOSIVE VAPORS;561
10.10.3;III. CALIBRATION USING CORONADISCHARGE;563
10.10.4;IV. CONCLUSIONS;564
10.10.5;REFERENCES;565
11;Author Index;566


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.